Type1 and 3 fimbriae phenotype and genotype as suitable markers for uropathogenic bacterial pathogenesis via attachment, cell surface hydrophobicity, and biofilm formation in catheter-associated urinary tract infections (CAUTIs)

Document Type : Original Article

Authors

1 Department of Microbiology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

2 Department of Biology, Faculty of Basic science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Objective(s): Catheters are one of the factors for complicated urinary tract infections. Uropathogenic bacteria can attach to the catheter via cell surface hydrophobicity (CSH), form biofilms, and remain in urinary tract. The study was evaluated phenotypic and genotypic characteristics of fimbriae in Klebsiella pneumoniae and uropathogenic Escherichia coli (UPEC) isolates from patients with catheter-associated urinary tract infections (CAUTIs) and their association with biofilm formation.
Materials and Methods: Urine specimens were collected through catheters in patients with CAUTIs. Sixty bacterial isolates were identified by biochemical tests. For determination of biofilm formation a tissue culture plate was used. Microbial adhesion to hydrocarbons (MATH) was conducted for CSH determination. The mannose-sensitive haemagglutination (MSHA) and mannose-resistant haemagglutination (MRHA) were determined for type 1 and type 3 fimbriae. Finally, the presence of genes encoding fimbriae was determined by PCR.
Results: All isolates showed strong CSH, biofilm capacity and MRHA phenotype. The results showed that 20% of UPEC and 23% of K. pneumoniae isolates contained MSHA phenotypes. There was a significant association between biofilm formation and MSHA phenotype in UPEC isolates. The frequency of fimA (80%) and fimH (96.6%) in K. pneumoniae isolates was higher than UPEC isolates. Both types of bacterial isolates with MSHA phenotypes harbored the fimH gene.
Conclusion: The phenotypic and genotypic characteristics of two bacterial species were highly similar. Also, the type of fimbriae affected bacterial biofilm formation through catheterization. It seems that fimH and mrk gene cluster subunits are suitable markers for identifying bacterial pathogenesis.

Keywords


1. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis 2013:17:e450-e3.
2. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2013:28:1-13.
3. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA.Committee HICPA. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect Control Hosp Epidemiol 2010:31:319-26.
4. Lobdell KW, Stamou S, Sanchez JA. Hospital-acquired infections. Surg Clin North Am 2012: 92:65-77.
5. Jordan R P C, Malic S, Waters MG, Stickler D J, Williams DW. “Development of an antimicrobial urinary catheter to inhibit urinary catheter encrustation .Microbiol.Dis 2015: 3:1-7.
6. Chatterjee S, Maiti PK,  Dey  R, Kundu Ak  , Dey Rk  .“Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect.” Ann Med Health Sci Res 2014: 4:100-104.
7. Ndejiko MJ, Abubakar BM,   Hindatu Y, Sulaiman M, Saidu H, Idris A, et al. Bacterial biofilm: a major challenge of catheterization. J Microbiol Res 2013:3:213-23.
8. Pelling H, Nzakizwanayo J, Milo S, Denham EL , MacFarlane WM, Bock LJ, et al. BV.Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019: 68: 277-293.
9. Donlan R, Costerton J. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002: 15: 167–193.
10. Heilmann C. Adhesion mechanisms of staphylococci. Bacterial adhesion: Adv Exp Med Biol 2011:715:105-23.
11. Terlizzi ME, Gribaudo G, Maffe ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017:15:1-22.
12. Ronald A, Nicolle L, Stamm E, Krieger J, Warren J, Schaeffer A, et al. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents 2001:17:343-348.
13. Gerlach GF, Clegg S, Allen BL. Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J bacteriol 1989:171:1262-1270.
14. Ottow J. Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 1975:29:79-108.
15. Barnhart MM, Sauer FG, Pinkner JS, Hultgren SJ. Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly. J bacteriol  2003:185:2723-2730.
16. Brinton Jr CC. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 1965:27:1003-1054.
17. Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC microbiol 2010:10:179-189
18. Cheryl-lynn YO, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC microbiol 2010:10:183-195
19. Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 2012: 65: 350-359.
20. Bergqvist D, Brönnestam R, Hedelin H, Ståhl A. The relevance of urinary sampling methods in patients with indwelling Foley catheters. Br J Urol 1980:52:92-95.
21. Stark RP, Maki DG. Bacteriuria in the catheterized patient: what quantitative level of bacteriuria is relevant? N Engl J Med 1984:311:560-564.
22. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis 2007:115:891-899.
23. Collee J, Fraser A, Marmino B, Simons A. Mackin and McCartney, Practical Medical Microbiology. The Churchill Livingstone. Inc USA  1996.
24. Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 1984:22:289-295.
25.Nwanyanwu C, Abu G. Influence of growth media on hydrophobicity of phenol-utilizing bacteria found in petroleum refinery effluent. Int Res J Biol Sci 2013:2:6-11.
26. Kadam T, Rupa L, Balhal D, Totewad N, Gyananath G. Determination of the degree of hydrophobicity–A technique to assess bacterial colonization on leaf surface and root region of lotus plant. Asian J Exp Sci 2009:23:135-139.
27. Qadri F, Haque A, Faruque SM, Bettelheim KA, Robins-Browne R, Albert MJ. Hemagglutinating properties of enteroaggregative Escherichia coli. J clin microbiol. 1994:32:510-514.
28. Old D, Tavendale A, Senior B. A comparative study of the type-3 fimbriae of Klebsiella species. J med microbiol 1985: 20:203-214.
29. Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA. Inhibition and inactivation of uropathogenic Escherichia coli biofilms on urinary catheters by sodium selenite. Inter J Mol sci 2018:19:1703-1716.
30. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015:13:269-284.
31. Niveditha S, Pramodhini S, Umadevi S, Kumar S, Stephen S. The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J clin diagn res 2012:6:1478-1482.
32. Shah C, Baral R, Bartaula B, Shrestha LB. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC microbiol. 2019: 19:204-210.
33. Karam MRA, Habibi M, Bouzari S. Relationships between virulence factors and antimicrobial resistance among Escherichia coli isolated from urinary tract infections and commensal isolates in Tehran, Iran. Osong Public Health Res Perspect 2018:9:217-224.
34. Fattahi S, Kafil HS, Nahai MR, Asgharzadeh M, Nori R, Aghazadeh M. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hyg Infect Control 2015:10:1-10.
35. Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 2014:4:112-119.
36.Gogra AB , Yao J, Sandy EH , Zheng SH , Zaray G , Koroma BM , Hui Z. Cell surface hydrophobicity (CSH) of Escherichia coli, Staphylococcus aureus and Aspergillus niger and the biodegradation of Diethyl Phthalate (DEP) via Microcalorimetry. J Am Sci 2010:6:78-88.
37. Mirani ZA, Fatima A, Urooj S, Aziz M, Khan MN, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli.  Iran J Basic Med Sci 2018:21:760-769.
38. Schwan WR. Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis 2011:1:17-25.
39. Burmølle M, Bahl MI, Jensen LB, Sørensen SJ, Hansen LH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiol 2008:154:187-95.
40. Wang X, Lünsdorf H, Ehrén I, Brauner A, Römling U. Characteristics of biofilms from urinary tract catheters and presence of biofilm-related components in Escherichia coli. Curr Microbiol 2010:60:446-53.
41. Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiol 2007:153:2321-2331.
42. Murphy CN, Mortensen MS, Krogfelt KA, Clegg S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013:81:3009-3017.
43. Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. J Infect Dis 2016:213:386-94.
44. Caitlin N. Murphy, Martin S. Mortensen, Karen A. Krogfelt, Steven Clegg Role of Klebsiella pneumoniae Type 1 and Type 3 Fimbriae in Colonizing Silicone Tubes Implanted into the Bladders of Mice as a Model of Catheter-Associated Urinary Tract Infections. Infect Immun 2013:81: 3009–3017.
45. Mahmood MT, Abdullah BA. The relationship between biofilm formation and presence of fimH and mrkD genes among Escherichia coli and K. pneumoniae isolated from patients in Mosul. Mosul J Nurs 2015:3:34-42.


ylococcus aureusand Aspergillus nigerand the biodegradation of Diethyl Phthalate (DEP) via Microcalorimetry. Journal of American Science. 2010;6(7)
37.    Mirani ZA, Fatima A, Urooj S, Aziz M, Khan MN, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iranian journal of basic medical sciences. 2018;21(7):760.
38.    Schwan WR. Regulation of fim genes in uropathogenic Escherichia coli. World journal of clinical infectious diseases. 2011;1(1):17.
39.    Burmølle M, Bahl MI, Jensen LB, Sørensen SJ, Hansen LH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology. 2008;154(1):187-95.
40.    Wang X, Lünsdorf H, Ehrén I, Brauner A, Römling U. Characteristics of biofilms from urinary tract catheters and presence of biofilm-related components in Escherichia coli. Current microbiology. 2010;60(6):446-53.
41.    Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology. 2007;153(7):2321-31.
42.    Murphy CN, Mortensen MS, Krogfelt KA, Clegg S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infection and immunity. 2013;81(8):3009-17.
43. Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. The Journal of infectious diseases. 2016;213(3):386-94.
44. Schroll C, Barken KB,  Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiology. 2010, 10:179.
45. Caitlin N. Murphy, Martin S. Mortensen, Karen A. Krogfelt, Steven Clegg Role of Klebsiella pneumoniae Type 1 and Type 3 Fimbriae in Colonizing Silicone Tubes Implanted into the Bladders of Mice as a Model of Catheter-Associated Urinary Tract Infections. Infection and Immunity .2013;81(8): 3009–3017.
46.    Mahmood MT, Abdullah BA. The relationship between biofilm formation and presence of fimH and mrkD genes among E. coli and K. pneumoniae isolated from patients in Mosul. Mosul Journal of Nursing. 2015;3(1):34-42.