Interaction of miR-146a-5p with oxidative stress and inflammation in complications of type 2 diabetes mellitus in male rats: antioxidant and anti-inflammatory protection strategies in type 2 diabetic retinopathy

Document Type : Original Article


1 Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran

2 Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

3 Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran


Objective(s): This study aimed to evaluate the role of miR-146a-5p in the pathogenesis of diabetic retinopathy and its interaction with oxidative stress and inflammation in the ocular tissue of rats with type 2 diabetes mellitus (T2DM).
Materials and Methods: Twenty adult male Sprague Dawley rats (220 ±20 g) were randomly assigned to control and diabetic groups. A high-fat diet was used for three months to induce T2DM which was confirmed by the HOMA-IR index. After that, the levels of glucose and insulin in serum, HOMA-IR as an indicator of insulin resistance, the ocular level of oxidative markers, TNF‐α, IL-1β, MIPs, and MCP-1 along with ocular gene expression of NF-κB, Nrf2, and miR-146a-5p were evaluated.
Results: The level of lipid peroxidation along with metabolic and inflammatory factors significantly increased and the antioxidant enzyme activity significantly decreased in diabetic rats (p <0.05). The ocular expression of NF-κB and TNF-α increased and Nrf2, HO-1, and miR-146a-5p expression decreased in diabetic rats (p <0.05). In addition, a negative correlation between miR-146a-5p expression with NF-κB and HOMA-IR and a positive correlation between miR-146a-5p with Nrf2 were observed.
Conclusion: It can be concluded that miR-146a-5p may regulate Nrf2 and NF-κB expression and inflammation and oxidative stress in the ocular tissue of diabetic rats.


1. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 2014;11:1185-1200.
2. Jelkmann W. Regulation of erythropoietin production. J Physiol 2011;589:1251-1258.
3. Prattichizzo F, Giuliani A, Ceka A, Rippo MR, Bonfigli AR, Testa R, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015;7:56-68.
4. Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Int J Diabetes Res 2015;2015:436879-896.
5. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2019;15:327-345.
6. Zaiou M. circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications. Cells. 2020;9:659-678.
7. Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and microvascular complications of diabetes. Int J Endocrinol 2018;2018 :6890501-6890521.
8. Markopoulos GS, Roupakia E, Tokamani M, Alabasi G, Sandaltzopoulos R, Marcu KB, et al. Roles of NF-κB signaling
in the regulation of miRNAs impacting on inflammation in cancer. Biomedicines 2018;6:40-59.
9. Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, et al. MiR-146a as marker of senescenceassociated pro-inflammatory status in cells involved in vascular remodelling. Age 2013;35:1157-1172.
10. Li B, Liu S, Miao L, Cai L. Prevention of diabetic complications by activation of Nrf2: Diabetic cardiomyopathy and nephropathy. Exp Diabetes Res 2012;2012 :216512-216519.
11. da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, et al. Nrf2 as a potential mediator of cardiovascular
risk in metabolic diseases. Front Pharmacol 2019;10:382-394.
12. Shi L, Kim AJ, Chang RC, Chang JY, Ying W, Ko ML, et al. Deletion of miR-150 exacerbates retinal vascular overgrowth in high-fat-diet induced diabetic mice. PLoS One 2016;11:e0157543.
13. Nasiri K, Akbari A, Nimrouzi M, Ruyvaran M, Mohamadian A. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type II diabetes mellitus by modulating the genes expression involved in steroidogenesis,
inflammation and oxidative stress. J Ethnopharmacol 2021;275:114139-114152.
14. Nimrouzi M, Ruyvaran M, Zamani A, Nasiri K, Akbari A. Oil and extract of safflower seed improve fructose induced metabolic syndrome through modulating the homeostasis of trace elements, TNF-α, and fatty acids metabolism. J Ethnopharmacol 2020;254:112721-112733.
15. Kim AJ, Chang JYA, Shi L, Chang RCA, Ko ML, Ko GYP. The Effects of Metformin on Obesity-Induced Dysfunctional Retinas. Invest Ophthalmol Vis Sci 2017;58:106-118.
16. Clarkson-Townsend DA, Douglass AJ, Singh A, Allen RS, Uwaifo IN, Pardue MT. Impacts of high fat diet on ocular outcomes in rodent models of visual disease. Exp Eye Res 2021;204:108440-108455.
17. Wan RJ, Li YH. MicroRNA‑146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model. Mol Med Rep 2018;17:4759-4766.
18. Chang RC, Shi L, Huang CC, Kim AJ, Ko ML, Zhou B, et al. High-fat diet-induced retinal dysfunction. Invest Ophthalmol Vis Sci. 2015;56:2367-2380.
19. Aebi H. [13] Catalase in vitro. Methods Enzymol 1984;105:121-126.
20. Zal F, Mostafavi‐Pour Z, Vessal M. Comparison of the effects of vitamin e and/or quercetin in attenuating chronic cyclosporine a‐induced nephrotoxicity in male rats. Clin Exp Pharmacol Physiol 2007;34:720-724.
21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.
22. Wei J, Wang J, Zhou Y, Yan S, Li K, Lin H. MicroRNA-146a contributes to SCI recovery via regulating TRAF6 and IRAK1 expression. Biomed Res Int 2016;2016: : 4013487-4013495.
23. Nimrouzi M, Abolghasemi J, Sharifi MH, Nasiri K, Akbari A. Thyme oxymel by improving of inflammation, oxidative stress, dyslipidemia and homeostasis of some trace elements ameliorates obesity induced by high-fructose/fat diet in male rat. Biomed Pharmacother 2020;126:110079-110092.
24. Echeverría F, Valenzuela R, Espinosa A, Bustamante A, Álvarez D, Gonzalez-Mañan D, et al. Reduction of high-fat dietinduced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: Involvement of resolvins RvE1/2 and RvD1/2. J Nutr Biochem 2019;63:35-43.
25. de Faria JBL, Silva KC, de Faria JML. The contribution of hypertension to diabetic nephropathy and retinopathy: The role of inflammation and oxidative stress. Hypertens Res 2011;34:413-422.
26. Wu MY, Yiang GT, Lai TT, Li CJ. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic
retinopathy. Oxid Med Cell Longev 2018;2018:3420187- 3420199.
27. Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin Transl Immunology 2018;7:e1016.
28. Chaar LJ, Coelho A, Silva NM, Festuccia WL, Antunes VR. High-fat diet-induced hypertension and autonomic imbalance
are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiol Rep 2016;4:e12811.
29. Kolluru GK, Bir SC, Kevil CG. Endothelial Dysfunction and Diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012;2012:918267-Last page.
30. Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic Microvascular Disease: An endocrine society scientific statement. J Clin Endocrinol Metab 2017;102:4343-4410.
31. Rohowetz LJ, Kraus JG, Koulen P. Reactive oxygen speciesmediated damage of retinal neurons: Drug development
targets for therapies of chronic neurodegeneration of the retina. Int J Mol Sci 2018;19: 3362-3392.
32. Suryavanshi SV, Kulkarni YA. NF-κβ: A potential target in the management of vascular complications of diabetes. Front
Pharmacol 2017;8:798-810.
33. Huang H, Gandhi JK, Zhong X, Wei Y, Gong J, Duh EJ, et al. TNFα is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci 2011;52:1336-1344.
34. Semeraro F, Cancarini A, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015;2015:582060-582076.
35. Bhavsar I, Miller CS, Al-Sabbagh M. Macrophage inflammatory protein-1 alpha (MIP-1 alpha)/CCL3: As a biomarker. eneral Methods in Biomarker Research and their Applications. 2015:223-249.
36. Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci 2018;19:942-973.
37. Patel JI, Saleh GM, Hykin PG, Gregor ZJ, Cree IA. Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye 2008;22:223-228.
38. Tashimo A, Mitamura Y, Nagai S, Nakamura Y, Ohtsuka K, Mizue Y, et al. Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein‐1 in patients with diabetic retinopathy. Diabet Med 2004;21:1292-
39. Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB. Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2011;2:96-103.
40. Batliwala S, Xavier C, Liu Y, Wu H, Pang IH. Involvement of Nrf2 in ocular diseases. Oxid Med Cell Longev 2017;2017::1703810- 1703828.
41. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017;2017:4826724-4826739.
42. Jiménez-Osorio AS, Picazo A, González-Reyes S, Barrera-Oviedo D, Rodríguez-Arellano ME, Pedraza-Chaverri J. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci 2014;15:20290-20305.
43. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. BBA Molecular Basis of Disease 2017;186:585-597.
44. Li L, Pan H, Wang H, Li X, Bu X, Wang Q, et al. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci Rep 2016;6:1-11.
45. Uno K, Prow TW, Bhutto IA, Yerrapureddy A, McLeod DS, Yamamoto M, et al. Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy. Exp Eye Res 2010;90:493-500.
46. Lenin R, Sankaramoorthy A, Mohan V, Balasubramanyam M. Altered immunometabolism at the interface of increased endoplasmic reticulum (ER) stress in patients with type 2 diabetes. J Leukoc Biol 2015;98:615-622.
47. Karolina DS, Armugam A, Tavintharan S, Wong MTK, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011;6:e22839.
48. Alipoor B, Ghaedi H, Meshkani R, Torkamandi S, Saffari S, Iranpour M, et al. Association of MiR-146a expression and type 2 diabetes mellitus: A meta-analysis. Int J Mol Cell Med 2017;6:156-163.
49. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A dominant, negative regulator of the innate immune response.
Front Immunol 2014;5:578-589.
50. Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L, et al. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 2020;45:543-555.
51. Park K, Steffes M, Lee DH, Himes JH, Jacobs DR, Jr. Association of inflammation with worsening HOMA-insulin resistance. Diabetologia 2009;52:2337-2344.
52. Park K, Gross M, Lee D-H, Holvoet P, Himes JH, Shikany JM, et al. Oxidative stress and insulin resistance: The coronary artery risk development in young adults study. Diabetes Care 2009;32:1302-1307.
53. Rajamani U, Jialal I. Hyperglycemia induces Tolllike receptor-2 and-4 expression and activity in human microvascular retinal endothelial cells: Implications for diabetic retinopathy. J Diabetes Res 2014; 2014 :790902-790928.
54. Morcos M, Schlotterer A, Sayed AAR, Kukudov G, Oikomonou D, Ibrahim Y, et al. Rosiglitazone reduces angiotensin II and advanced glycation end product-dependent sustained nuclear factor-κB activation in cultured human proximal tubular epithelial cells. Horm Metab Re 2008;40:752-759.
55. Xie Y, Chu A, Feng Y, Chen L, Shao Y, Luo Q, et al. MicroRNA- 146a: A comprehensive indicator of inflammation and oxidative stress status induced in the brain of chronic t2dm rats. Front Pharmacol 2018;9:478-489.
56. Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, et al. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 2017;8:851-864.
57. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 2011;3:159-166.
58. Lo WY, Peng CT, Wang HJ. MicroRNA-146a-5p mediates high glucose-induced endothelial inflammation via targeting
interleukin-1 receptor-associated kinase 1 expression. Front Physiol 2017;8:551-561.
59. Luo Q, Ren Z, Zhu L, Shao Y, Xie Y, Feng Y, et al. Involvement of microRNA-146a in the inflammatory response of s tatus epilepticus rats. CNS Neurol Disord Drug Targets 2017;16:686-693.
60. Xu J, Zgheib C, Liechty KW. miRNAs in bone marrow–derived mesenchymal stem cells. MicroRNA in regenerative medicine: Elsevier; 2015;111-136.
61. Li S, Yue Y, Xu W, Xiong S. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates
bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One 2013;8:e81438.
62. He X, Jing Z, Cheng G. MicroRNAs: New regulators of toll-like receptor signalling pathways. BioMed Res Int 2014;2014:945169-9451783.
63. Kamali K, Korjan ES, Eftekhar E, Malekzadeh K, Soufi FG. The role of miR-146a on NF-κB expression level in human umbilical vein endothelial cells under hyperglycemic condition. Bratisl Lek Listy 2016;117:376-380.
64. Qu X, Wang N, Cheng W, Xue Y, Chen W, Qi M. MicroRNA‑146a protects against intracerebral hemorrhage by inhibiting inflammation and oxidative stress. Exp Ther Med 2019;18:3920-3928.
65. Yu M, Li H, Liu Q, Liu F, Tang L, Li C, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 2011;23:883-892.
66. Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, et al. Nrf2-MafG heterodimers contribute globally to anti-oxidant and metabolic networks. Nucleic Acids Res 2012;40:10228-10239.
67. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol