Prevalence of bacteriocin genes in Lactobacillus strains isolated from fecal samples of healthy individuals and their inhibitory effect against foodborne pathogens

Document Type : Original Article

Authors

1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran

3 Behbahan Faculty of Medical Science, Behbahan, Iran

4 Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

5 Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran

6 Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran

7 Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran

Abstract

Objective(s): Foodborne diseases are considered as an important public health issue. The purpose of the current study was to isolate Lactobacillus spp. strains from fecal samples, investigate their antimicrobial properties, and assess the expression of genes encoding bacteriocin in co-culture of Lactobacillus with enteric pathogens.
Materials and Methods: Fecal samples of healthy people were collected. Human colon adenocarcinoma cell line Caco-2 was used to examine Lactobacillus strains adherence capacity. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to determine bacteriocin-encoding genes expression in co-culture of the selected Lactobacillus strain with Salmonella, Shigella, and two diarrheagenic Escherichia coli serotypes during 4, 6, and 24 hr of incubation.
Results: The selected L. plantarum strain was able to inhibit four foodborne pathogens in both methods. L. plantarum No.14 exhibited the highest ability to adhere to Caco-2 cells. In this study, pln F, sak P, pln I, pln B, and pln J genes of L. plantarum No.14 were upregulated in co-culture of L. plantarum No.14 with diarrheagenic E. coli serotypes. In addition, acd, Lactacin F, sak P, pln J, pln EF, and pln NC8 genes as well as pln NC8 and pln A genes mRNA levels were significantly increased in co-culture of L. plantarum No.14 with Shigella dysenteriae, and Salmonella typhi, respectively, during 24 hrs of incubation.
Conclusion: Other studied genes were down-regulated during the incubation time. The selected L. plantarum strains could be served as alternative antimicrobial agents against pathogens which could contaminate foodstuffs and are responsible for human diseases.

Keywords


1. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS medicine 2015;12:e1001923.
2. Faour-Klingbeil D, C. D. Todd E. Prevention and control of foodborne diseases in middle-east north african countries: Review of national control systems. Int J Environ Res Public Health 2020;17:70.
3. Uçar A, Yilmaz MV. Food safety–problems and solutions. Significance, Prev Control Food Relat Dis 2016:3-15.
4. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998;11:142-201.
5. Organization WH. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. WHO; 2015.
6. Zweifel C, Stephan R. Spices and herbs as source of Salmonella-related foodborne diseases. Int Food Res J 2012;45:765-769.
7. Yang S-C, Lin C-H, Sung CT, Fang J-Y. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 2014;5:241.
8. Kerry RG, Patra JK, Gouda S, Park Y, Shin H-S, Das G. Benefaction of probiotics for human health: A review. J FOOD DRUG ANAL 2018;26:927-39.
9. Zielińska D, Kolożyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties. J Food Drug Anal 2018.
10.    Dadfarma N, Nowroozi J, Kazemi B, Bandehpour M. Identification of the effects of acid-resistant Lactobacillus caseimetallopeptidase gene under colon-specific promoter on the colorectal and breast cancer cell lines. Iran J Basic Med Sci 2021;24:506-13.
11.    Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. 2019;10.
12.    Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Salimian M. Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide. Iran J Basic Med Sci 2020;23 :1471-1479.
13.    Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant. Bacteria Microorganisms 2020;8.
14.    Heng NC, Tagg JR. What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol  2006;4:160.
15.    Netz DJA, Sahl H-G, Marcolino R, dos Santos Nascimento Jn, de Oliveira SS, Soares MB, et al. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 2001;311:939-949.
16.    Rohani M, Noohi N, Talebi M, Katouli M, Pourshafie MR. Highly heterogeneous probiotic Lactobacillus species in healthy iranians with low functional activities. PLoS One 2015;10: e0144467.
17.    Kwon H-S, Yang E-H, Yeon S-W, Kang B-H, Kim T-Y. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett 2004;239:267-275.
18.    Macwana SJ, Muriana PM. A ‘bacteriocin PCR array’for identification of bacteriocin-related structural genes in lactic acid bacteria. J Microbiol Methods 2012;88:197-204.
19.    Noohi N, Ebrahimipour G, Rohani M, Talebi M, Pourshafie MR. Phenotypic characteristics and probiotic potentials of Lactobacillus spp. isolated from poultry. Jundishapur J Microbiol 2014;7.
20.    Lebeer S, Verhoeven TL, Vélez MP, Vanderleyden J, De Keersmaecker SC. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol  2007;73:6768-6775.
21.    Hernandez D, Cardell E, Zarate V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin‐like substance produced by Lactobacillus plantarum TF711. J Appl Microbiol 2005;99:77-84.
22.    Toba T, Samant S, Itoh T. Assay system for detecting bacteriocin in microdilution wells. Lett Appl Microbiol 1991;13:102-104.
23. Jacobsen CN, Nielsen VR, Hayford A, Møller PL, Michaelsen K, Paerregaard A, et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 1999;65:4949-4956.
24.    Drago L, Gismondo MR, Lombardi A, De Haën C, Gozzini L. Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol  Lett 1997;153:455-463.
25.    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001;25:402-408.
26.    Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 2011;17:16.
27.    Zahedi Bialvaei A, Sheikhalizadeh V, Mojathedi A, Irajian G. Epidemiological burden of Listeria monocytogenes in Iran. Iran J Basic Med Sci 2018;21:770-780.
28.    Murphree R, Garman K, Phan Q, Everstine K, Gould LH, Jones TF. Characteristics of foodborne disease outbreak investigations conducted by Foodborne Diseases Active Surveillance Network (FoodNet) sites, 2003–2008.  Arch Clin Infect Dis 2012;54:498-503.
29.    Zhang L, Wei Q, Han Q, Chen Q, Tai W, Zhang J, et al. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay.  Front microbiol 2018;9:94.
30.    Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019;11:1591.
31.    Michail S, Abernathy F. Lactobacillus plantarum reduces the in vitro secretory response of intestinal epithelial cells to enteropathogenic Escherichia coli infection. J Pediatr Gastroenterol Nutr 2002;35:350-355.
32.    Lievin-Le Moal V, Amsellem R, Servin A, Coconnier M. Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut 2002;50 :803-811.
33.    Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PS, Goulet J, Tompkins TA. Probiotics reduce enterohemorrhagic Escherichia coli O157: H7-and enteropathogenic E. coli O127: H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 2005;73:5183-5188.
34.    Davoodabadi A, Dallal MMS, Lashani E, Ebrahimi MT. Antimicrobial activity of Lactobacillus spp. isolated from fecal flora of healthy breast-fed infants against diarrheagenic Escherichia coli. Jundishapur J Microbiol 2015;8.
35.    Perez RH, Zendo T, Sonomoto K, editors. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact;13:1-3.
36.    Silva CC, Silva SP, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol  2018;9:594.
37.    Abbasiliasi S, Tan JS, Ibrahim TAT, Bashokouh F, Ramakrishnan NR, Mustafa S, et al. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv 2017;7:29395-29420.
38.    Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 2017;22:1255.
39.    Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 2016;100:4297-308.
40.    Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A. Cell–cell communication in food related bacteria. Int J Food Microbiol 2007;120:34-45.
41.    Diep DB, Straume D, Kjos M, Torres C, Nes IF. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 2009;30:1562-1574.
42.    Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2018;42:805-828.
43.    Maldonado-Barragán A, West SA. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. J Evol Biol 2020;33:101-111.
44.    Collins B, Guinane CM, Cotter PD, Hill C, Ross RP. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants. Appl Environ Microbiol 2012;78:2923-2929.
45.    Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 2003;69:383-389.
46.    Diep DB, Johnsborg O, Risøen PA, Nes IF. Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum. Mol Microbiol 2001;41:633-644.
47.    Stoyancheva G, Marzotto M, Dellaglio F, Torriani S. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Arch Microbiol 2014;196 :645-653.
48.    Majhenič A, Venema K, Allison G, Matijašić B, Rogelj I, Klaenhammer T. DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lactobacillus gasseri LF221. Appl Microbiol Biotechnol 2004;63:705-714
49.    Omar NB, Abriouel H, Lucas R, Martínez-Cañamero M, Guyot J-P, Gálvez A. Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso.  Int J Food Microbiol 2006;112:44-50.
50.    Kawai Y, Saitoh B, Takahashi O, Kitazawa H, Saito T, Nakajima H, et al. Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci Biotechnol Biochem 2000;64:2201-2208.
51.    Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 2001;147:643-651.
52.    Hata T, Tanaka R, Ohmomo S. Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1.  Int J Food Microbiol 2010;137:94-99.
53.    Omar NB, Abriouel H, Keleke S, Valenzuela AS, Martínez-Cañamero M, López RL, et al. Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 2008;127:18-25.
54.    Maldonado-Barragán A, Caballero-Guerrero B, Lucena-Padrós H, Ruiz-Barba JL. Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol 2013;33:40-47.
55.    Rojo-Bezares B, Saenz Y, Navarro L, Zarazaga M, Ruiz-Larrea F, Torres C. Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol 2007;24:482-491.
56.    Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol 1992;15:460-468.