Dystrophin gene editing by CRISPR/Cas9 system in human skeletal muscle cell line (HSkMC)

Document Type : Short Communication


1 Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran

2 Student Research Committee, Shiraz University of Medical Science, Shiraz, Iran

3 Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran


Objective(s): Duchene muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations in the DMD gene, resulting in the absence of dystrophin expression leading to membrane fragility and myofibril necrosis in the muscle cells. Because of progressive weakness in the skeletal and cardiac muscles, premature death is inevitable.  There is no curative treatment available for DMD. In recent years, advances in genetic engineering tools have made it possible to manipulate gene sequences and accurately modify disease-causing mutations. CRISPR/Cas9 technology is a promising tool for gene editing because of its ability to induce double-strand breaks in the DNA.
Materials and Methods: In this study for the exon-skipping approach, we designed a new pair of guide RNAs (gRNA) to induce large deletion of exons 48 to 53 in the DMD gene in the human skeletal muscle cell line (HSkMC), in order to correct the frame of the gene.
Results: Data showed successful editing of DMD gene by deletion of exons 48 to 53 and correction of the reading frame in edited cells. Despite a large deletion in the edited DMD gene, the data of real-time PCR, immune florescent staining demonstrated successful expression of truncated dystrophin in edited cells.
Conclusion: This study demonstrated that the removal of exons 48-53 by the CRISPR / Cas9 system did not alter the expression of the DMD gene due to the preservation of the reading frame of the gene.


1.    Falzarano M, Scotton C, Passarelli C, Ferlini A. Duchenne muscular dystrophy: From diagnosis to therapy. J Molecules 2015; 20:18168-18184.
2.    Ryder S, Leadley R, Armstrong N, Westwood M, De Kock S, Butt T, et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: An evidence review. Orphanet J Rare Dis 2017; 12:1-21.
3.    Aartsma-Rus A, Ginjaar IB, Bushby K. The importance of genetic diagnosis for Duchenne muscular dystrophy. World J Med Genet 2016; 53:145-151.
4.    Walter MC, Reilich P. Recent developments in Duchenne muscular dystrophy: facts and numbers. J Cachexia Sarcopenia Muscle 2017; 8:681-685.
5.    Garry DJ. Dystrophin-deficient cardiomyopathy. JACC CardioOncol 2016; 67: 2533-2546.
6.    Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 2018; 17:347-361.
7.    Nelson CE, Gersbach CA. Genome editing for duchenne muscular dystrophy.  Mus Gen Thera: Springer 2019; 2; 383-403.
8.    Suthar R, Sankhyan N. Duchenne muscular dystrophy: A practice update. Indian J Pediatr 2018; 85: 276-281.
9.    White S, Kalf M, Liu Q, Villerius M, Engelsma D, Kriek M, et al. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization. Am J Hum Genet 2003; 71:365-371.
10.    Hegde MR, Chin EL, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray‐based mutation detection in the dystrophin gene. Hum Mutat 2008; 29:1091-1099.
11.    Andrews JG, Wahl RA. Duchenne and Becker muscular dystrophy in adolescents: current perspectives. Adolesc Health Med Ther 2018; 9:53-63.
12.    Crone M, Mah JK. Current and emerging therapies for Duchenne muscular dystrophy. Curr Treat Options Neurol 2018; 20:1-17.
13.    Shimizu-Motohashi Y, Komaki H, Motohashi N, Takeda Si, Yokota T, Aoki Y. Restoring dystrophin expression in Duchenne muscular dystrophy: current status of therapeutic approaches. J Pers Med 2019; 9:1-14.
14.    Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, et al. Duchenne muscular dystrophy: an updated review of common available therapies. Int J Neurosci 2018; 128:854-864.
15.     Guiraud S, Chen H, Burns DT, Davies KE. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Ex Physiol 2015; 100:1458-1467.
16.     Jarmin S, Kymalainen H, Popplewell L, Dickson G. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther 2014; 14:209-230.
17.     Mendell JR, Rodino-Klapac LR. Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell res 2016; 26:513-514.
18.     Aartsma‐Rus A, Fokkema I, Verschuuren J, Ginjaar I, Van Deutekom J, van Ommen GJ, et al. Theoretic applicability of antisense‐mediated exon skipping for duchenne muscular dystrophy mutations. Hum Muta 2009; 30:293-299.
19.     Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Thera 2016; 24:564-569.
20.     Gee P, Xu H, Hotta A. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy. Stem Cells Int 2017; 9:1-12.
21.     Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8:2281-2308.
22.     Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol 2011; 14:321-327.
23.     Barrangou R. Cas9 targeting and the CRISPR revolution Sci 2014;344(6185):707-708.
24.     Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46:505-529.
25.     Thurtle‐Schmidt DM, Lo TW. Molecular biology at the cutting edge: A review on CRISPR/Cas9 gene editing for undergraduates. Biochem Mol Biol Educ 2018; 46:195-205.
26.     Farboud B, Severson AF, Meyer BJ. Strategies for efficient genome editing using CRISPR-Cas9.J Genet 2019;211:431-457.
27.     Lindahl T, Barnes D, editors. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 2000: Cold Spring Harbor Laboratory Press.
28.     Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018;9: 1-13.
29.     Frontera WR, Ochala J. Skeletal muscle: A brief review of structure and function. Calcif Tissue Int 2015; 96:183-195.
30.     Hotta A. Genome editing gene therapy for duchenne muscular dystrophy. J Neuromuscul Dis 2015; 2:343-345.
31.     Rando TA. Non-viral gene therapy for Duchenne muscular dystrophy: Progress and challenges. Biochim Biophys Acta Mol Basis Dis 2007; 1772:263-271.
32.     Bertoni C, Morris GE, Rando TA. Strand bias in oligonucleotide-mediated dystrophin gene editing. Hum Mol Genet 2004; 14:221-233.
33.     Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Thera 2015; 23:523-532.
34.     Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Thera 2013; 21:1718-1726.
35.     Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Sci 2016; 351:407-411.
36.     Min Y-L, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci adv 2019;5-3:324-336.
37.     Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. J Stem Cell 2016; 18:533-540.
38.    Fortunato F, Rossi R, Falzarano MS, Ferlini A. Innovative Therapeutic Approaches for Duchenne Muscular Dystrophy. J Clin Med 2021; 10:820-841.
39.     Babačić H, Mehta A, Merkel O, Schoser B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PloS One 2019;14: e0212198.
40.     Chemello F, Bassel-Duby R, Olson EN. Correction of muscular dystrophies by CRISPR gene editing. J Clin Invest 2020; 130:2766-2776.
41.     Dara M, Razban V, Talebzadeh M, Moradi S, Dianatpour M. Using CRISPR/Cas9 system to knock out exon 48 in DMD gene. Avicenna J Med Biotechnol 2021; 13:54-57.
42.    Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, et al. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020:1-20.
43.    Dokholyan NV. Experimentally-driven protein structure
modeling. J Proteomics 2020; 220:103777-103800.
44.     Hillary VE, Ceasar SA, Ignacimuthu S. Genome engineering in insects: focus on the CRISPR/Cas9 system. In: Genome engineering via CRISPR-Cas9 system: Academic Press 2020; 1:219-249.
45.     Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018; 361:866-869.
46.     Koeks Z, Bladen CL, Salgado D, Van Zwet E, Pogoryelova O, McMacken G, et al. Clinical outcomes in duchenne muscular dystrophy: a study of 5345 patients from the treat-nmd dmd global database. J Neuromuscul Dis 2017; 4:293-306.
47.     Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects. Adv Sci 2020; 7:1902312-19002328.
48.    Reinig AM, Mirzaei S, Berlau DJ. Advances in the treatment of duchenne muscular dystrophy: New and emerging pharmacotherapies. Pharmacotherapy: J Huma Pharmacol Drug Ther 2017; 37:492-499.
49.     Mata López S, Balog-Alvarez C, Vitha S, Bettis AK, Canessa EH, Kornegay JN, et al. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PloS One 2020;15: e0228072.
50.     Miyamoto M, Tochinai R, Sekizawa S-i, Shiga T, Uchida K, Tsuru Y, et al. Cardiac lesions in duchenne muscular dystrophy model rats with out-of-frame Dmd gene mutation mediated by CRISPR/Cas9 system. J Toxicol Pathol 2020; 33:227-236.