A study of the transformation of umbilical cord mesenchymal stem cells by interferon-gamma

Document Type : Original Article

Authors

1 Laboratory of Clinical Immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria, Ob/Gyn Hospital Dr Shterev, Sofia, Bulgaria

2 Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria, Ob/Gyn Hospital Dr Shterev, Sofia, Bulgaria

3 Laboratory of Clinical Immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria

4 Ob/Gyn Hospital Dr Shterev, Sofia, Bulgaria

Abstract

Objective(s): Mesenchymal stem cells (MSCs) exist in almost all tissues. Their unique nature is completed by their immunomodulatory functions, holding promise for the treatment of many diseases. An inflammatory environment precedes the immunosuppressive abilities of MSCs and this study was intended to better understand how umbilical cord MSCs (UCMSCs) react to the process of inflammation, regarding their basic characteristics and behavior when primed with the key pro-inflammatory cytokine, Interferon-γ (IFNγ).
Materials and Methods: Human MSCs from the umbilical cord were isolated, expanded, and treated with IFNγ. Primed cells were analyzed to define their ability to form colonies, their morphology, differentiation potential, proliferation, and apoptosis rate.  
Results: UCMSCs treated with IFNγ changed their fibroblast-like morphology and retained the expression of typical MSCs markers. IFNγ treated UCMSCs had significantly higher MFI levels regarding the expression of HLA-I (980.43 ± 556.64) and PD-L1 (598.04 ± 416.90) compared with the control cells (144.97 ± 78.5 and 122.05 ± 103.83, respectively; p <0.01). Under the influence of IFNγ, the cells had a lower population doubling time compared with the control cultures (50.345 ± 9.155 versus 61.135 ± 21.110, respectively; p <0.01) and higher numbers of colony-forming unit-fibroblasts (26.0 ± 12.2 versus 10.2 ± 8.0, respectively; p <0.05). The primed MSCs could not undergo osteogenic and adipogenic differentiation. IFNγ increased the percentage of cells in the apoptotic state on day eight (29.470 ± 6.59 versus 15.708 ± 6.190, respectively; p <0.01).
Conclusion: The properties of UCMSCs can be influenced by the pro-inflammatory cytokine IFNγ.

Keywords


1. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9:1-4.
2.    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells 2007; 25:2739-2749.
3.    Dominici ML, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: The international society for cellular therapy position statement. Cytotherapy 2006; 8:315-317.
4.    Saeedi P, Halabian R, Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem cell invest 2019; 6:1-18.
5.    Raza SS, Seth P, Khan MA. ‘Primed’mesenchymal stem cells: A potential novel therapeutic for COVID19 patients. Stem Cell Rev Rep 2020; 153-162.
6.    Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 2013; 2013:496218.
7.    Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 2011; 10:410-415.
8.    Cagliani J, Grande D, Molmenti EP, Miller EJ, Rilo HL. Immunomodulation by mesenchymal stromal cells and their clinical applications. J Stem Cell Regen Biol 2017; 3:1-26.
9.    Liang C, Jiang E, Yao J, Wang M, Chen S, Zhou Z, et al. Interferon-γ mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro. Hematol 2018; 23:44-49.
10.    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon‐γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem cells 2006; 24:386-398.
11.    Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon‐γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 2007; 149:353-363.
12.    Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells: The international society for cellular therapy (ISCT) working proposal. Cytotherapy 2014; 16:81-90.
13.    Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 2012; 48:75-83.
14.    Prasanna JS, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNc and TNFa, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PLoS One 2010; 2:5-21.
15.    Chan WK, Lau AS, Li JC, Law HK, Lau YL, Chan GC. MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-γ challenge. Exp Hematol 2008; 36:1545-1555.
16.    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103:1669-1675.
17.    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells 2006; 24:1294-1301.
18.    Logue SE, Elgendy M, Martin SJ. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat Protoc 2009; 4:1383-1395.
19.    Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 2009; 259:150-156.
20.    Bach EA, Aguet M, Schreiber RD. The IFNγ receptor: A paradigm for cytokine receptor signaling. Annu Rev Immunol 1997; 15:563-591
21.    Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. EBioMedicine 2018; 28:261-273.
22.    Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Pescatori MS, Stubbs AP, et al. Inflammatory conditions affect gene expression and function of human adipose tissue‐derived mesenchymal stem cells. Clin Exp Immunol 2010; 162:474-486.
23.    Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2, 3 dioxygenase (IDO). PloS One 2011; 6:1-13.
24.    Strojny C, Boyle M, Bartholomew A, Sundivakkam P, Alapati S. Interferon gamma–treated dental pulp stem cells promote human mesenchymal stem cell migration in vitro. J Endod 2015; 41:1259-1264.
25.    Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 2011; 17:1594-1613.
26.    Svensson-Arvelund J, Ernerudh J, Buse E, Cline JM, Haeger JD, Dixon D, et al. The placenta in toxicology part II: Systemic and local immune adaptations in pregnancy. Toxicol Pathol 2014; 42:327-338.
27.    Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood 2006; 107:4817-4824.
28.    Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation. Blood 2004; 103:4619-4621.
29.    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005; 35:1482-1490.
30.    Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008; 18:846-857.
31.    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon‐γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem cells 2006; 24:386-398.
32.    Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 2017; 19:1189-1201.
33.    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206:3015-3029.
34.    Strauch V, Saul D, Berisha M, Mackensen A, Mougiakakos D, Jitschin R. N‐glycosylation controls inflammatory licensing‐triggered PD‐L1 upregulation in human mesenchymal stromal cells. Stem Cells 2020; 38:986-993.
35.    Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: Tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86:8-16.
36.    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 2002; 62:3603-3608.
37.    Chan J, O’Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005; 23:93-102.
38.    Hemeda H, Jakob M, Ludwig AK, Giebel B, Lang S, Brandau S. Interferon-γ and tumor necrosis factor-α differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev 2010; 19:693-706.
39.    Du J, Zhou L, Chen X, Yan S, Ke M, Lu X, et al. IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol 2012; 44:1305-1314.
40.    Duijvestein M, Wildenberg ME, Welling MM, Hennink S, Molendijk I, van Zuylen VL, et al. Pretreatment with interferon‐γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem cells 2011; 29:1549-1558.
41.    Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. EBioMedicine 2018; 28:261-273.