Isolation, characterization, and effectiveness of bacteriophage Pɸ-Bw-Ab against XDR Acinetobacter baumannii isolated from nosocomial burn wound infection

Document Type : Original Article

Authors

1 Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran

2 Department of Biology, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran

Abstract

Objective(s): With emergence of drug resistance, novel approaches such as phage therapy for treatment of bacterial infections have received significant attention. The purpose of this study was to isolate and identify effective bacteriophages on extremely drug-resistant (XDR) bacteria isolated from burn wounds.
Materials and Methods: Pathogenic bacteria were isolated from hospitalized patient wounds in specialized burn hospitals in Iran, and their identification was performed based on biochemical testing and sequencing of the gene encoding 16S rRNA. Bacteriophages were isolated from municipal sewage, Isfahan, Iran. The phage morphology was observed by TEM. After detection of the host range, adsorption rate, and one-step growth curve, the phage proteomics pattern and restriction enzyme digestion pattern were analyzed.
Results: All isolates of bacteria were highly resistant to antibiotics. Among isolates, Acinetobacter baumannii strain IAU_FAL101 (GenBank accession number: MW845680), which was an XDR bacterium, showed significant sensitivity to phage Pɸ-Bw-Ab. TEM determined the phage belongs to Siphoviridae. They had double-stranded DNA. This phage showed the highest antibacterial effect at 15 °C and pH 7. Analysis of the restriction enzyme digestion pattern showed Pɸ-Bw-Ab phage was sensitive to most of the used enzymes and based on SDS-PAGE, protein profiles were revealed 43 to 90 kDa.
Conclusion: Considering the potential ability of the isolated phage, it had an antibacterial impact on other used bacterial spp and also strong antibacterial effects on XDR A. baumannii. Also, it had long latency and low burst size. This phage can be a suitable candidate for phage therapy.

Keywords


1. Campos J, Gil J, Mourão J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bac terial pathogens and antimicrobial resistance: An exploratory study in Porto region, Portugal. Int J Food Microbiol 2015; 3:1-6.
2. Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 2020; 15:2867-2890.
3. Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther 2017; 34:599-610.
4. Summer GJ, Puntillo KA, Miaskowski C, Green PG, Levine JD. Burn injury pain: the continuing challenge. J Pain 2007; 8:533-548.
5. Rosenkranz KM, Sheridan R. Management of the burned trauma patient: balancing conflicting priorities. Burns 2002; 28:665-669.
6. Hawkins A, Maclennan PA, McGwin JrG, Cross JM, Rue LW, 3rd. The impact of combined trauma and burns on patient mortality. J Trauma 2005; 58:284-288.
7. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19:403-434.
8. Hermans MH. Wounds and ulcers: Back to the old nomenclature. Wounds 2010; 22:289-293.
9. Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 1997; 77:637-650.
10. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14:244-269.
11. Rafla K, Tredget EE. Infection control in the burn unit. Burns 2011; 37:5-15.
12. Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant Pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res 2014; 8:26-29.
13. Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC. Infection in Burns. Surg Infect (Larchmt) 2016; 17:250-255.
14. Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P, et al. Gram negative wound infection in hospitalised adult burn patients systematic review and metanalysis. PLoS ONE 2014; 9: e95042.
15. Jiang L, Tan J, Hao Y, Wang Q, Yan X, Wang D, et al. Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii. Front Microbiol 2020; 11:506068.
16. Sedaghat A, Khadem-Rezaiyan M, Ahmadabadi A, Abbaspour H, Youssefi M, Shirzad MM, et al. Antibacterial resistance pattern of Acinetobacter baumannii in burn patients in northeast of iran. Jundishapur J Microbiol 2019; 12: e94668.
17. Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292-301. 
18. Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol 2021; 6:157–161.
19. Pruitt BA Jr, McManus AT, Kim SH, Goodwin CW. Burn wound infections: current status.  World J Surg 1998; 22: 135-145.
20. Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, Van Duin D. Bacterial Infections after burn injuries: Impact of multidrug resistance. Clin Infect Dis 2017; 65: 2130-2136.
21. Gill J, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 2010; 11: 2-14.
22. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017; 9:50.
23. Naghavi NS, Golgoljam M, Akbari M. Effect of three sewage isolated bacteriophages on the multi drug resistant pathogenic bacteria. J Biol Sci 2013; 13:422-426.
24. McVay CS, Velásquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 2007; 51:1934–1938.
25. Soothill J. Use of bacteriophages in the treatment of Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther 2013; 11:909-915.
26. Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes, et al. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 2014; 4:66-73.
27. Kumari S, Harj K, Chhibber S. Bacteriophage treatment of burn wound infection caused by Pseudomonas aeruginosa PAO in BALB/c mice. American J Biomed Sci 2009; 1:385-394.
28. Sivera Marza JA, Soothill JS, Boydell P. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 2006; 32:644-646.
29. Lavergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 2018; 5: ofy064.
30. Yang H, Liang L, Lin S, Jia S. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 2010; 10:131.
31. Jin J, Li ZJ, Wang SW, Wang SM, Huang DH, Li YH, et al. Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol 2012; 12:156.
32. Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS ONE 2017; 12: e0179245.
33. Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, et al. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 2014; 63:1055-1065.
34. Merabishvili M, Monserez R, van Belleghem J, Rose T, Jennes S, De Vos D, et al. Stability of bacteriophages in burn wound care products. PLoS ONE 2017;12: e0182121.
35. Goli HR, Nahaei MR, Ahangarzadeh Rezaee M, Hasani A, Samadi Kafil H, Aghazadeh M. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol 2016; 8:62-69.
36. Elston HR, Baudo JA, Stanek JP, Schaab M. Multi-biochemical test system for distinguishing enteric and other gram-negative bacilli. Applied microbiology 1971; 22:408-414.
37. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703.
38. De Melo ACC, da Mata Gomes A, Melo FL, Ardisson-Araújo DMP, de Vargas APC, Ely VL, et al. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol 2019; 19:134.
39. Huang G, Le S, Peng Y, Zhao Y, Yin S, Zhang L, et al. Characterization and genome sequencing of phage Abp1, a new phiKMV-like virus infecting multi drug resistant Acinetobacter baumannii. Curr Microbiol 2013; 66: 535-543.
40. Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study.  J pathog 2016;2016: 4065603.
41. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268-281.
42. Mohammed-Ali MN, Jamalludeen NM. Isolation and characterization of bacteriophage against methicillin resistant Staphylococcus aureus. J Med Microb Diagn 2015; 5:213.
43. Ghasemi SM, Bouzari M, Shaykh Baygloo N, Chang HI. Insights into new bacteriophages of Lactococcus garvieae belonging to the family Podoviridae. Archives of virology 2014; 159:2909-2915.
44. Beheshti-Maal K, Soleimani Delfan A, Salmanizadeh S. Isolation and identification of two novel Escherichia coli bacteriophages and their application in wastewater treatment and coliform’s phage therapy. Jundishapur J Microbiol 2015; 8:1-6.
45. Yazdi M, Bouzari M, Ghaemi EA, Shahin K. Isolation, characterization and genomic analysis of a novel bacteriophage VB_EcoS-Golestan infecting multidrug-resistant Escherichia coli isolated from urinary tract infection. Scientific Rep 2020; 10:7690.
46. Bradley DE. Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 1967; 31:230–314.
47. Van Regenmortel MHV, Mayo MA, Fauquet CM et al. Virus nomenclature: consensus versus chaos. Arch Virol 2000; 145:2227-2232.
48. Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan MB, et al. Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 2016; 161:1095-1099.
49. Zare L, Shenagari M, Khanmirzaei M A, Mojtahedi A. Isolation of lytic phages against pathogenic E.coli isolated from diabtic ulcers. Iran J Med Microbiol 2017; 11:34-41.
50. Ghasemi SM, Bouzari M, Emtiazi G. Preliminary characterization of Lactococcus garvieae bacteriophage isolated from wastewater as a potential agent for biological control of lactococcosis in aquaculture. Aquacult Int 2014; 22:1469–1480.
51. Topka G, Bloch S, Nejman-Faleńczyk B, Gąsior T, Jurczak-Kurek A, Necel A, et al. Characterization of Bacteriophage vB-EcoS-95, Isolated from Urban Sewage and Revealing Extremely Rapid Lytic Development. Front Microbiol 2019; 9:3326.
52. Fan N, Qi R, Yang M. Isolation and characterization of a virulent bacteriophage infecting Acinetobacter johnsonii from activated sludge. Res Microbiol 2017; 168:472–481.
53. O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol 2004; 186:2862-2871.
54. Lima WG, Silva Alves GC, Sanches C, Antunes Fernandes SO, De Paiva MC. Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: A systematic review and meta-analysis. Burns 2019; 45:1495-1508.
55. Jeon J, Park JH, Yong D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol 2019; 19:70.
56. Kusradze I, Karumidze N, Rigvava S, Dvalidze T, Katsitadze M, Amiranashvili I, et al. Characterization and testing the efficiency of Acinetobacter baumannii phage vB-GEC_Ab-M-G7 as an antibacterial agent. Front Microbiol 2016; 7:1590.
57. Shen GH, Wang JL, Wen FS, Chang KM, Kuo CF, Lin CH, et al.  Isolation and characterization of ϕkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS ONE 2012; 7: e46537.
58. Popova, AV, Zhilenkov EL, Myakinina VP, Krasilnikova VM, Volozhantsev NV. Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiology Letters 2012; 332: 40-46.
59. Yuan Y, Li X, Wang L, Li G, Cong C, Li R, et al. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 2021; 14:403-418.
60. Yang H, Liang L, Lin S, Jiab SH. Isolation and Characterization of a Virulent Bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 2010; 10:131.