1. Bluher M. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15:288-298.
2. Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol 2018; 131:31-42.
3. Uribe-Cerda S, Morselli E, Perez-Leighton C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr Opin Endocrinol Diabetes Obes 2018; 25:292-297.
4. Bond CW, Trinko R, Foscue E, Furman K, Groman SM, Taylor JR, et al. Medial nucleus accumbens projections to the ventral tegmental area control food consumption. J Neurosci 2020; 40:4727-4738.
5. O’Connor EC, Kremer Y, Lefort S, Harada M, Pascoli V, Rohner C, et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 2015; 88:553-564.
6. Qualls-Creekmore E, Munzberg H. Modulation of feeding and associated behaviors by lateral hypothalamic circuits. Endocrinology 2018; 159:3631-3642.
7. Stratford TR, Wirtshafter D. Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 2012; 226:548-554.
8. Urstadt KR, Coop SH, Banuelos BD, Stanley BG. Behaviorally specific versus non-specific suppression of accumbens shell-mediated feeding by ipsilateral versus bilateral inhibition of the lateral hypothalamus. Behav Brain Res 2013; 257:230-241.
9. Urstadt KR, Kally P, Zaidi SF, Stanley BG. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes. Neuropharmacology 2013; 67:176-182.
10. Park ES, Yi SJ, Kim JS, Lee HS, Lee IS, Seong JK, et al. Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats. J Vet Sci 2004; 5:295-302.
11. Tunisi L, D’Angelo L, Fernandez-Rilo AC, Forte N, Piscitelli F, Imperatore R, et al. Orexin-A/hypocretin-1 controls the vta-nac mesolimbic pathway via endocannabinoid-mediated disinhibition of dopaminergic neurons in obese mice. Front Synaptic Neurosci 2021; 13:622405.
12. Paxinos G, Watson, C. The Rat Brain in Stereotaxic Coordinates. . San Diego, CA: Academic Press Inc.; 2007.
13. Liu X, Gao S, Zhang N, Jin T, Sun X, Luan X, et al. The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 2020; 80:102028.
14. Dhillo WS. Appetite regulation: An overview. Thyroid 2007; 17:433-445.
15.Guyenet SJ, Schwartz MW. Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 2012; 97:745-755.
16. Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, et al. Orexin System: The key for a healthy life. Front Physiol 2017; 8:357-365.
17. Carlezon WA, Jr., Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 2009; 56 Suppl 1:122-132.
18. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 2007; 56:27-78.
19. Ito R, Hayen A. Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J Neurosci 2011; 31:6001-6007.
20. Madsen HB, Brown RM, Lawrence AJ. Neuroplasticity in addiction: Cellular and transcriptional perspectives. Front Mol Neurosci 2012; 5:99-114.
21. Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis 2015; 30:367-379.
22. Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci 2007; 27:6948-6955.
23. Kenny PJ. Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci 2011; 12:638-651.