Description of the calf thymus DNA-malathion complex behavior by multi-spectroscopic and molecular modeling techniques: EMF at low and high frequency approaches

Document Type : Original Article

Authors

1 Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s): Small molecules can bind to DNA via covalent or non-covalent interactions, which results in altering or inhibiting the function of DNA. Thus, understanding the interaction patterns of medicines or other small molecules can be very crucial. In this study, the interaction between malathion and calf thymus DNA (ctDNA), in the absence and presence of electromagnetic field (EMF) at low and high frequencies, was investigated through various spectroscopies and viscosity measurements.
Materials and Methods: The interaction studies were performed by means of absorbance, circular dichroism, fluorescence spectroscopy, viscosity, thermal melting, and molecular modeling techniques.
Results: The fluorescence intensity of the ctDNA-malathion complex in the presence of EMF, has revealed quenching of fluorescence emission curves. The dynamic interaction and RLS studies have implied the changes in ctDNA-malathion complex throughout the presence of EMF which suggested that hydrophobic forces play the main role in the binding. Studies have revealed that malathion does not have any effect on binding ethidium bromide to ctDNA, which signifies the groove binding. The viscosity of ctDNA increased as the malathion concentration was enlarged. The circular dichroism technique suggested that the ellipticity values of the ctDNA-malathion complex have not increased with enhancing the malathion concentration. Molecular docking and dynamics studies have indicated a potent electrostatic interaction between ctDNA and malathion in the groove binding site.  
Conclusion: The results of spectroscopic studies reinforced a potent interaction between malathion and ctDNA in the absence and presence of EMF which can help us for further pharmaceutical drug discoveries.

Keywords


1. Privalov PL, Crane-Robinson C. Forces maintaining the DNA double helix and its complexes with transcription factors. Prog Biophys Mol Biol 2018;135:30-48.
2. Zeglis BM, Pierre VC, Barton JK. Metallo-intercalators and metallo-insertors. Chem Commun 2007:4565-4579.
3. Drevenšek P, Turel I, Poklar Ulrih N. Influence of copper(II) and magnesium(II) ions on the ciprofloxacin binding to DNA. J Inorg Biochem 2003;96:407-415.
4. Khan MA, Musarrat J. Interactions of tetracycline and its derivatives with DNA in vitro in presence of metal ions. Int J Biol Macromol 2003;33:49-56.
5. Zhou Y, Li Y. Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods. Biophys Chem 2004;107:273-281.
6. Vergani L, Mascetti G, Gavazzo P, Nicolini C. Ethidium bromide intercalation and chromatin structure: A thermal analysis. Thermochim Acta 1997;294:193-204.
7. Cao Y, He X, Gao Z, Peng L. Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA. Talanta 1999;49:377-383.
8. Rye HS, Dabora JM, Quesada MA, Mathies RA, Glazer AN. Fluorometric assay using dimeric dyes for double- and single-stranded DNA and RNA with picogram sensitivity. Anal Biochem 1993;208:144-150.
9. Hurley LH, Boyd FL. DNA as a target for drug action. Trends Pharmacol Sci 1988;9:402-407.
10. Strekowski L, Wilson B. Noncovalent interactions with DNA: An overview. Mutat Res 2007;623:3-13.
11. Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 2013;124:1-19.
12. Shahabadi N, Moghadam NH. Determining the mode of interaction of calf thymus DNA with the drug sumatriptan using voltammetric and spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 2012;99:18-22.
13. Maroni M, Colosio C, Ferioli A, Fait A. Biological Monitoring of Pesticide Exposure: A review. Introduction. Toxicology. 2000;143:1-118.
14. Assini FL, Zanette KD, Brocardo PS, Pandolfo P, Rodrigues ALS, Takahashi RN. Behavioral effects and ChE measures after acute and repeated administration of malathion in rats. Environ Toxicol Pharmacol 2005;20:443-449.
15. Elston DM. Controversies concerning the treatment of lice and scabies. J Am Acad Dermatol 2002;46:794-796.
16. Babu N, Malik J, Rao GS, Aggarwal M, Ranganathan V. Effects of subchronic malathion exposure on the pharmacokinetic disposition of pefloxacin. Environ Toxicol Pharmacol 2006;22:167-171.
17. Lofty HM, Abd El-Aleem AE-AA, Monir HH. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography. Bulletin of Faculty of Pharmacy, Cairo University 2013;51:255-260.
18. Lee AG, Malcolm East J, Balgavy P. Interactions of insecticides with biological membranes. J Pestic Sci 1991;32:317-327.
19. Handy R, Samei HA, Bayomy M, Mahran AM, Abdeen AM, El-Elaimy EA. Chronic diazinon exposure: Pathologies of spleen, thymus, blood cells, and lymph nodes are modulated by dietary protein or lipid in the mouse. Toxicology 2002;172:13-34.
20. Gokalp O, Buyukvanlı B, Cicek E, Ozer MK, Koyu A, Altuntas I, et al. The effects of diazinon on pancreatic damage and ameliorating role of vitamin E and vitamin C. Pestic Biochem Physiol 2005;81:123-128.
21. Franco J, Posser T, Mattos J, Trevisan R, Souza Brocardo P, Rodrigues A, et al. Zinc reverses malathion-induced impairment in anti-oxidant defenses. Toxicol Lett 2009;187:137-143.
22. Kalender S, Ogutcu A, Uzunhisarcikli M, Açikgoz F, Durak D, Ulusoy Y, et al. Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology.2005;211:197-206.
23. Kalender Y, Uzunhisarcikli M, Ogutcu A, Acikgoz F, Kalender S. Effects of diazinon on pseudocholinesterase activity and haematological indices in rats: The protective role of Vitamin E. Environ Toxicol Pharmacol 2006;22:46-451.
24. Selmi S. Histopathological, biochemical and molecular changes of reproductive function after malathion exposure of prepubertal male mice. RSC advances 2015;v. 5(no. 18):pp. 13743-53-2015 v.5 no.18.
25. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208-IN1.
26. Raman N, Sobha S, Selvaganapathy M. Probing the DNA-binding behavior of tryptophan incorporating mixed-ligand complexes. Monatshefte für Chemie - Chemical Monthly $V 143. 2012:1487-195.
27. Tyagi G, Charak S, Mehrotra R. Binding of an indole alkaloid, vinblastine to double stranded DNA: A spectroscopic insight in to nature and strength of interaction. J Photochem Photobiol B 2012;108:48-52.
28. Ahmadi F, Jamali N, Moradian R, Astinchap B. Binding Studies of Pyriproxyfen to DNA by Multispectroscopic Atomic Force Microscopy and Molecular Modeling Methods. DNA Cell Biol 2011;31:259-268.
29. Bi S, Yan L, Wang Y, Pang B, Wang T. Spectroscopic study on the interaction of eugenol with salmon sperm DNA in vitro. J Lumin 2012;132:2355-2360.
30. Wang L, Zhang G, Pan J, Xiong C, Gong D. Intercalation binding of food anti-oxidant butylated hydroxyanisole to calf thymus DNA. J Photochem Photobiol B 2014;141:253-261.
31. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995;91:43-56.
32. Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011;32:2359-2368.
33. JE Jones DS. On the determination of molecular fields. —II. From the equation of state of a gas. Proceedings of the Royal Society of London Series A 1924;106:463-477.
34. Baguley BC, Le Bret M. Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 1984;23:937-943.
35. Long J, Wang X-m, Xu D-l, Ding L-s. Spectroscopic studies on the interaction mechanisms of safranin T with herring sperm DNA using acridine orange as a fluorescence probe. J Mol Recognit 2014;27:131-137.
36. Kashanian S, Gholivand MB, Ahmadi F, Ravan H. Interaction of Diazinon with DNA and the Protective Role of Selenium in DNA Damage. DNA Cell Biol 2008;27:325-332.
37. Zhu Y, Zhang R, Wang Y, Ma J, Li K, Li Z. Biophysical study on the interaction of an aesthetic, vecuronium bromide with human serum albumin using spectroscopic and calorimetric methods. J Photochem Photobiol B 2014;140:381-389.
38. Zhang Y, Zhang G, Zhou X, Li Y. Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques. Anal Bioanal Chem 2013;405:8871-8883.
39. Kashanian S, Shariati Z, Roshanfekr H, Ghobadi S. DNA Binding Studies of 3, 5, 6-Trichloro-2-Pyridinol Pesticide Metabolite. DNA Cell Biol 2012;31:1341-1348.
40. Chen F, Yin J, Wang Y, Yang M, Meng Q, Zeng B, et al. Interaction of L-arginine with κ-casein and its effect on amyloid fibril formation by the protein: Multi-spectroscopic approaches. J Photochem Photobiol B 2015;143C.
41. Zhao T, Bi S, Wang Y, Wang T, Pang B, Gu T. In vitro studies on the behavior of salmeterol xinafoate and its interaction with calf thymus DNA by multi-spectroscopic techniques. Spectrochim Acta A Mol Biomol Spectrosc 2014;132C:198-204.
42. Devi CV, Singh NR. Absorption spectroscopic probe to investigate the interaction between Nd(III) and calf-thymus DNA. Spectrochim Acta A Mol Biomol Spectrosc 2011;78:1180-1186.
43. Shi J-H, Chen J, Wang J, Zhu Y-Y. Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc 2015;136:443-450.
44. Kashanian S, Askari S, Ahmadi F, Omidfar K, Ghobadi S, Tarighat F. In Vitro Study of DNA Interaction with Clodinafop-Propargyl Herbicide. DNA Cell Biol 2008;27:581-586.
45. Cui F-L, Yan Y-H, Zhang Q-Z, Qu G-R, Du J, Yao X-J. A study on the interaction between 5-Methyluridine and human serum albumin using fluorescence quenching method and molecular modeling. J Mol Model 2009;16:255-262.
46. Ding F, Liu W, Li N, Zhang L, Sun Y. Complex of nicosulfuron with human serum albumin: A biophysical study. J Mol Struct 2010;975:256-264.
47. Zhu J, Chen L, Dong Y, Li J, Liu X. Spectroscopic and molecular modeling methods to investigate the interaction between 5-Hydroxymethyl-2-furfural and calf thymus DNA using ethidium bromide as a probe. Spectrochim Acta A Mol Biomol Spectrosc 2014;124:78-83.
48. Zhang G, Zhang Y, Zhang Y, Li Y. Spectroscopic studies of cyanazine binding to calf thymus DNA with the use of ethidium bromide as a probe. Sens Actuators B Chem 2013;182:453-460.
49. Mudasir M, Wahyuni E, Tjahjono DH, Yoshioka N, Inoue H. Spectroscopic studies on the thermodynamic and thermal denaturation of the ct-DNA binding of methylene blue. Spectrochim Acta A Mol Biomol Spectrosc 2010;77:528-534.
50. Paul BK, Guchhait N. Exploring the Strength, Mode, Dynamics, and Kinetics of Binding Interaction of a Cationic Biological Photosensitizer with DNA: Implication on Dissociation of the Drug–DNA Complex via Detergent Sequestration. J Phys Chem B 2011;115:11938-11949.
51. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 1994;94:2319-2358.
52. Fei Y, Lu G, Fan G, Wu Y. Spectroscopic Studies on the Binding of a New Quinolone Antibacterial Agent: Sinafloxacin to DNA. Anal Sci 2009;25:1333-1338.
53. Liu C-S, Zhang H, Chen R, Shi X-S, Bu X-H, Yang M. Two New Co(II) and Ni(II) Complexes with 3-(2-Pyridyl)pyrazole-Based Ligand: Synthesis, Crystal Structures, and Bioactivities. Chem Pharm Bull (Tokyo) 2007;55:996-1001.
54. Zhang G, Fu P, Wang L, Hu M. Molecular Spectroscopic Studies of Farrerol Interaction with Calf Thymus DNA. J Agric Food Chem 2011;59:8944-8952.
55. Sarkar D, Das P, Chattopadhyay N. Binding Interaction of Cationic Phenazinium Dyes with Calf Thymus DNA: A Comparative Study. J Phys Chem B 2008;112:9243-9249.
56. Sun H, Xiang J, Liu Y, Li L, Li Q, Xu G, et al. A stabilizing and denaturing dual-effect for natural polyamines interacting with G-quadruplexes depending on concentration. Biochimie 2011;93:1351-1356.
57. Caruso F, Rossi M, Benson A, Opazo C, Freedman D, Monti E, et al. Ruthenium–Arene Complexes of Curcumin: X-Ray and Density Functional Theory Structure, Synthesis, and Spectroscopic Characterization, in Vitro Antitumor Activity, and DNA Docking Studies of (p-Cymene)Ru(curcuminato)chloro. J Med Chem 2012;55:1072-1081.
58. Farrel A, Murphy J, Guo J-t. Structure-based prediction of transcription factor binding specificity using an integrative energy function. Bioinformatics 2016;32:i306-i13.
59. Li Y, Zhang G, Pan J, Zhang Y. Determination of metolcarb binding to DNA by spectroscopic and chemometrics methods with the use of acridine orange as a probe. Sens Actuators B Chem 2014;191:464-472.
60. Song G-W, Cai Z-X, He Y, Lou Z-W. The fluorescence studies of interaction between 4-(n-2′-glucosyl) butyramidyl triphenyl phosphonium chloride and DNA. Sens Actuators B Chem 2004;102:320-324.