Neurotropin alleviates rat osteocarcinoma pain via P2X3 receptor activation in the midbrain periaqueductal gray

Document Type : Original Article

Authors

1 Key Laboratory of Brain Science, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China

2 Graduate School, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China

Abstract

Objective(s): Clinically effective analgesia treatment for patients afflicted with osteocarcinoma lessens the intensity of pain. The midbrain periaqueductal gray (PAG) plays a critical role in pain modulation, and activation of P2X3 receptors in this region mediates pain processing. Neurotropin is a small molecule drug used for analgesic treatment of a number of chronic pain conditions. The present study aims at determining whether P2X3 receptor activation in PAG is responsible for the analgesic effect of neurotropin in rats with osteocarcinoma pain. 
Materials and Methods: The tibia of female Sprague-Dawley rats was inoculated with breast carcinoma cells to establish the osteocarcinoma pain model. The effects of intraperitoneal injection of 6, 12, and 18 neurotropin units (NU)/kg on pain threshold and receptor expression of P2X3 in the ventrolateral PAG (vlPAG) were assessed. The P2X3 receptor antagonist A-317491 (1.5 nmol/0.3 µl) was administered into vlPAG with a high-dose neurotropin (18 NU/kg) to determine the role of this receptor in the analgesic effect. 
Results: The pain thresholds of the rats with osteocarcinoma pain continuously decreased, whereas P2X3 receptor expression in vlPAG only slightly increased after osteocarcinoma cell inoculation. Neurotropin substantially elevated the pain threshold and P2X3 receptor expression in vlPAG in a dose-dependent manner. A-317491 microinjection into vlPAG significantly reduced the analgesic effects of neurotropin in the rats with osteocarcinoma pain.
Conclusion: Through these findings, it is shown that vlPAG P2X3 receptor activation participates in neurotropin-mediated analgesia mechanism in osteocarcinoma pain.

Keywords


1. Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, et al. Advances in cancer pain from bone metastasis. Drug Des Devel Ther 2015; 9:4239-4245.
2.Yoon SY, Oh J. Neuropathic cancer pain: Prevalence, pathophysiology, and management. Korean J Intern Med 2018; 33:1058-1069.
3. Ngamkham S, Holden JE, Smith EL. A Systematic Review: Mindfulness intervention for cancer-related pain. Asia Pac J Oncol Nurs 2019; 6:161-169.
4. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: An overview. Trends Neurosci 2009; 32:19-29.
5. Burnstock G. Purinergic mechanisms and pain. Adv Pharmacol 2016; 75:91-137.
6. Chen Y, Li GW, Wang C, Gu Y, Huang LM. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain 2005; 119:38-48.
7. Pan AH, Lu DH, Luo XG, Chen L, Li ZY. Formalin-induced increase in P2X(3) receptor expression in dorsal root ganglia: implications for nociception. Clin Exp Pharmacol Physiol 2009; 36:e6-11.
8. Wu JX, Yuan XM, Wang Q, Wei W, Xu MY. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats. Mol Pain 2016; 12:1-10.
9. Gilchrist LS, Cain DM, Harding-Rose C, Kov AN, Wendelschafer-Crabb G, Kennedy WR, et al. Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res 2005; 1044:197-205.
10. Nagamine K, Ozaki N, Shinoda M, Asai H, Nishiguchi H, Mitsudo K, et al. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain 2006; 7:659-670.
11. Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci 2019; 22:1659-1668.
12. Lau BK, Winters BL, Vaughan CW. Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway. Br J Pharmacol 2020; 177:2320-2332.
13. Samineni VK, Premkumar LS, Faingold CL. Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain 2017; 158:1241-1253.
14. Xiao Z, Ou S, He WJ, Zhao YD, Liu XH, Ruan HZ. Role of midbrain periaqueductal gray P2X3 receptors in electroacupuncture-mediated endogenous pain modulatory systems. Brain Res 2010; 1330:31-44.
15. Masuguchi K, Watanabe H, Kawashiri T, Ushio S, Ozawa N, Morita H, et al. Neurotropin(R) relieves oxaliplatin-induced neuropathy via Gi protein-coupled receptors in the monoaminergic descending pain inhibitory system. Life Sci 2014; 98:49-54.
16. Zimmermann M. Ethical considerations in relation to pain in animal experimentation. Acta Physiol Scand Suppl 1986; 554:221-233.
17. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16:109-110.
18. Li P, Zhang Q, Xiao Z, Yu S, Yan Y, Qin Y. Activation of the P2X7 receptor in midbrain periaqueductal gray participates in the analgesic effect of tramadol in bone cancer pain rats. Mol Pain 2018; 14:1744806918803039.
19. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6st ed. Amsterdam: Academic Press; 2007. p.138-140.
20. Cunha TM, Verri WA, Jr, Vivancos GG, Moreira IF, Reis S, Parada CA, et al. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 2004; 37:401-407.
21. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32:77-88.
22. Van Nassauw L, Bogers J, Van Marck E, Timmermans JP. Role of reactive nitrogen species in neuronal cell damage during intestinal schistosomiasis. Cell Tissue Res 2001; 303:329-336.
23. Miura T, Okazaki R, Yoshida H, Namba H, Okai H, Kawamura M. Mechanisms of analgesic action of neurotropin on chronic pain in adjuvant-induced arthritic rat: roles of descending noradrenergic and serotonergic systems. J Pharmacol Sci 2005; 97:429-436.
24. Lei J, Ye G, Pertovaara A, You HJ. Effects of intramuscular heating-needle stimulation in controlling adjuvant-induced muscle nociception in rats: Differential roles of thalamic purinergic P2X3 receptors. Neuroscience 2020; 433:81-93.
25. Figura N, Smith J, Yu HM. Mechanisms of, and adjuvants for, bone pain. Hematol Oncol Clin North Am 2018; 32:447-458.
26. Falk S, Dickenson AH. Pain and nociception: Mechanisms of cancer-induced bone pain. J Clin Oncol 2014; 32:1647-1654.
27. Davila D, Antoniou A, Chaudhry MA. Evaluation of osseous metastasis in bone scintigraphy. Semin Nucl Med 2015; 45:3-15.
28. Li BT, Wong MH, Pavlakis N. Treatment and prevention of bone metastases from breast cancer: A comprehensive review of evidence for clinical practice. J Clin Med 2014; 3:1-24.
29. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12:6243s-6249s.
30. Shenoy PA, Kuo A, Vetter I, Smith MT. The walker 256 breast cancer cell- induced bone pain model in rats. Front Pharmacol 2016; 7:286.
31. Burnstock G. Purine and purinergic receptors. Brain Neurosci Adv 2018; 2:1-10
32. Oliveira A, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2016; 104:272-281.
33. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, et al. Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 2002; 99:11-19.
34. Fukui M, Nakagawa T, Minami M, Satoh M, Kaneko S. Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats. Mol Pain 2006; 2:19-Last page.
35. Liu PF, Fang HZ, Yang Y, Zhang QQ, Zhou QQ, Chen SS, et al. Activation of P2X3 receptors in the cerebrospinal fluid-contacting nucleus neurons reduces formalin-induced pain behavior via PAG in a rat model. Neuroscience 2017; 358:93-102.
36. Sun S, Qi D, Yang Y, Ji P, Kong J, Wu Q. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray. Neuroreport 2016; 27:277-283.
37. Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 2011; 22:214-219.
38. Taruno A. ATP Release Channels. Int J Mol Sci 2018; 19:808.
39. Kitajima N, Takikawa K, Sekiya H, Satoh K, Asanuma D, Sakamoto H, et al. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor. Elife 2020; 9: e57544.
40. Rivera A, Vanzulli I, Butt AM. A Central role for ATP signalling in glial interactions in the CNS. Curr Drug Targets 2016; 17:1829-1833.
41. Okai H, Okazaki R, Kawamura M, Yoshimura M. Excitatory effect of Neurotropin((R)) on noradrenergic neurons in rat locus coeruleus. Life Sci 2015; 136:79-86.
42. Ishikawa T, Yasuda S, Minoda S, Ibuki T, Fukuhara K, Iwanaga Y, et al. Neurotropin((R)) ameliorates chronic pain via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol 2015; 35:231-241.
43. Hishiyama S, Kotoda M, Ishiyama T, Mitsui K, Matsukawa T. Neuroprotective effects of neurotropin in a mouse model of hypoxic-ischemic brain injury. J Anesth 2019; 33:495-500.
44. Fang W, Liao W, Zheng Y, Huang X, Weng X, Fan S, et al. Neurotropin reduces memory impairment and neuroinflammation via BDNF/NF-kappaB in a transgenic mouse model of Alzheimer’s disease. Am J Transl Res 2019; 11:1541-1554.
45. Toda K, Tobimatsu Y. Efficacy of neurotropin in fibromyalgia: a case report. Pain Med 2008; 9:460-463.
46. Okazaki R, Namba H, Yoshida H, Okai H, Miura T, Kawamura M. The antiallodynic effect of Neurotropin is mediated via activation of descending pain inhibitory systems in rats with spinal nerve ligation. Anesth Analg 2008; 107:1064-1069.
47. Nasu T, Murase S, Takeda-Uchimura Y, Mizumura K. Intramuscularly injected neurotropin reduced muscular mechanical hyperalgesia induced by repeated cold stress in rats. Behav Pharmacol 2018; 29:261-269.
48. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 2002; 99:17179-17184.
49. Jarvis MF, Bianchi B, Uchic JT, Cartmell J, Lee CH, Williams M, et al. [3H]A-317491, a novel high-affinity non-nucleotide antagonist that specifically labels human P2X2/3 and P2X3 receptors. J Pharmacol Exp Ther 2004; 310:407-416.
50. McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, et al. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 2003; 140:1381-1388.