Synthesis and evaluation of 99mTc-DOTA-ARA-290 as potential SPECT tracer for targeting cardiac ischemic region

Document Type : Original Article


1 Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

5 Cardiovascular Interventional Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

6 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran


Objective(s): Myocardial infarction caused by ischemia of heart tissue is the main reason for death worldwide; therefore, early detection can reduce mortality and treatment costs. Erythropoietin (EPO) has protection effects on ischemic tissue due to nonhematopoietic peptide (pHBSP; ARA-290) which is derived from the B-subunit of EPO. 
Materials and Methods: We designed and synthesized a modified DOTA-(Lys-Dabcyl6, Phe7)-ARA-290 using Fmoc solid-phase peptide synthesis strategies. To improve serum stability, Fmoc-Lys-(Dabcyl)-OH as lipophilic amino acid was synthesized along with Fmoc-Phe-OH which then were substituted with Arg6 and Ala7, respectively; they were then investigated for the ability to detect ischemic cardiac imaging. DOTA-(Lys-Dabcyl6,Phe7)-ARA-290 was labeled with technetium 99m, and its radiochemical purity (RCP), stability in the presence of human serum and, specific bind to hypoxic H9c2 cells were evaluated. In vivo studies for biodistribution and SPECT scintigraphy were checked in a normal and cardiac ischemia rat model. 
Results: Radiolabeling purity was obtained more than 96% by ITLC, and in vitro stability of the radiopeptide up to 6 hr was 85%. The binding of 99mTc-ARA-290 to hypoxic cells was remarkably higher than normoxic cells (3 times higher than normoxic cells at 1 hr). Biodistribution and SPECT imaging on the cardiac ischemic model showed that radiopeptide considerably accumulated in the ischemic region (cardiac ischemic-to-lung rate = 3.65 ID/g % at 0.5 hr).
Conclusion: The results of studies, in vitro  and in vivo, indicated that 99mTc-DOTA-(Lys-Dabcyl6,Phe7)-ARA-290 could be an appropriate candidate for early diagnosis of cardiac ischemia.


1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S,  et al. Heart disease and stroke statistics—2018 update: A report from the american heart association. Circulation 2018;137:e67-492.
2. Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, et al. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern Emerg Med 2017;12:147-155.
3. Uversky VN, Redwan EM. Erythropoietin and co: intrinsic structure and functional disorder. Mol Biosyst 2017;13:56-72.
4. Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, et al. Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor. Proc Natl Acad Sci U S A 2004;101:14907-14912.
5. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci U S A 1990;87:5978-5982.
6. Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 2008;105:10925-10930.
7. Collino M, Thiemermann C, Cerami A, Brines M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol Ther 2015;151:32-40.
8. Byeon J, Lim YR, Kim HH, Suh JK. Structural identification of a non-glycosylated variant at Ser126 for O-glycosylation site from EPO BRP, human recombinant erythropoietin by LC/MS analysis. Mol Cells 2015;38:496.
9. Joshi D, Abraham D, Shiwen X, Baker D, Tsui J. Potential role of erythropoietin receptors and ligands in attenuating apoptosis and inflammation in critical limb ischemia. J Vasc Surg Venous Lymphat Disord 2014;60:191-201.
10.  Al Badarin FJ, Malhotra S. Diagnosis and prognosis of coronary artery disease with SPECT and PET. Curr Cardiol Rep 2019;21:1-1.
 11. McAfee JG, Neumann RD. Radiolabeled peptides and other ligands for receptors overexpressed in tumor cells for imaging neoplasms. Int J Nucl Med Biol 1996;23:673-676.
12. Powell MF, Grey H, Gaeta F, Sette A, Colón S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci 1992;81:731-735.
13. Dumont F, Bischoff P. Non-erythropoietic tissue-protective peptides derived from erythropoietin: WO2009094172. Expert Opin Ther Pat 2010;20:715-723.
14. Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta Gen Subj BBA-GEN SUBJECTS 2013;1830:5526-5534. 
15. Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971-994.
 16. Lumachi F, Zucchetta P, Marzola MC, Boccagni P, Angelini F, Bui F, et al. Advantages of combined technetium-99m-sestamibi scintigraphy and high-resolution ultrasonography in parathyroid localization: comparative study in 91 patients with primary hyperparathyroidism. Eur J Endocrinol 2000;143:755-760.
17. Rahmanian N, Hosseinimehr SJ, Khalaj A, Noaparast Z, Abedi SM, Sabzevari O. 99m Tc-radiolabeled GE11-modified peptide for ovarian tumor targeting. Daru 2017;25:13. 
18. Shen Z, Zhang Y, Chen Y. Synthesis of dye-labeled lysine derivatives. Synth Commun 2000 ;30:2525-2532.
19. Nadtoka O, Vretik L, Gavrylko T, Syromyatnikov V. The photochemical behavior of polyhydroxy styrene with azofragments containing free methacrylic double bounds. Mol Cryst Liq 2017;642:115-123.
20. Behrendt R, White P, Offer J. Advances in Fmoc solid‐phase peptide synthesis. J Pept Sci 2016;22:4-27.
21. Mojarrad P, Zamani S, Seyedhamzeh M, Omoomi FD, Karimpourfard N, Hadadian S, et al. Novel radiopharmaceutical (Technetium-99m)-(DOTA-NHS-ester)-Methionine as a SPECT-CT tumor imaging agent. Eur J Pharm Sci 2020; 141:105112.
22. Varshney R, Hazari PP, Uppal JK, Pal S, Stromberg R, Allard M, et al. Solid phase synthesis, radiolabeling and biological evaluation of a 99mTc-labeled αVβ3 tripeptide (RGD) conjugated to DOTA as a tumor imaging agent. Cancer Biol Ther 2011;11:893-901.
23. Rezazadeh F, Sadeghzadeh N, Abedi SM, Abediankenari S. 99mTc labeled D (LPR): A novel retro-inverso peptide for VEGF receptor-1 targeted tumor imaging. Nucl Med Biol 2018;62:54-62.
24. Varshney R, Hazari PP, Tiwari AK, Mathur R, Kaushik A, Saklani M, et al. Synthesis and biological evaluation of modified laminin peptide (N2S2-KDP) with enhanced affinity for neuronal growth and targeted molecular imaging (SPECT). Bioorg Chem 2021;107:104516.
25. Jokar S, Behnammanesh H, Erfani M, Sharifzadeh M, Gholami M, Sabzevari O, et al. Synthesis, biological evaluation and preclinical study of a novel 99mTc-peptide: A targeting probe of amyloid-β plaques as a possible diagnostic agent for Alzheimer’s disease. Bioorg Chem 2020;99:103857.
26. Fan Y, Lu M, Yu XA, He M, Zhang Y, Ma XN, et al. Targeted myocardial hypoxia imaging using a nitroreductase-activatable near-infrared fluorescent nanoprobe. Anal Chem 2019;91:6585-6592.
27. Wu D, Yotnda P. Induction and testing of hypoxia in cell culture. J Vis Exp 2011:e2899.
28. Ding M, Lei J, Han H, Li W, Qu Y, Fu E, et al. SIRT1 protects against myocardial ischemia–reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 2015;14:1-2.
29. Jiao H, Zhao X, Han J, Zhang J, Wang J. Synthesis of a novel 99mTc labeled GE11 peptide for EGFR SPECT imaging. Int J Radiat Biol 2020;96:1443-1451.
30. Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med 2015;56:145-152.
31. Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int 2014;2014.
32. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015;112:238-250.
 33. Strauss HW, Nunn A, Linder K. Nitroimidazoles for imaging hypoxic myocardium. J Nucl Cardiol 1995;2:437-445.    
34. Curtis KK, Wong WW, Ross HJ. Past approaches and future directions for targeting tumor hypoxia in squamous cell carcinomas of the head and neck. Crit Rev Oncol Hematol  2016;103:86-98.
35. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov 2015;20:122-128.
36. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851-885. 
37. Wei L, Bensimon C, Lockwood J, Yan X, Fernando P, Wells RG, et al. Synthesis and characterization of 123I-CMICE-013: a potential SPECT myocardial perfusion imaging agent. Bioorg Med Chem 2013;21:2903-2911.
38. Ghotbi AA, Kjær A, Hasbak P. Comparison of PET rubidium‐82 with conventional SPECT myocardial perfusion imaging. Clin Physiol Funct Imaging 2014;34:163-170.
39. Okarvi SM. Peptide‐based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 2004;24:357-397.
40. Yang C, Xu Z, Zhao Z, Li L, Zhao T, Peng D, et al. A Novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014;1842:2306-2317. 
41. Yang C, Zhang C, Jia J, Wang L, Zhang W, Li J, et al. Cyclic helix B peptide ameliorates acute myocardial infarction in mice by inhibiting apoptosis and inflammatory responses. Cell Death Discov 2019;5:78-87.
42. Krijger GC, Claessens HA, Wolterbeek HT. On the separation of 99mTcO4-, 99mTc-DTPA and 99mTc-citrate as marker species for the determination of Tc chemical forms in plant material using capillary zone electrophoresis. Chem Speciat Bioavailab 1996;8:29-36.
43. Amin T, Infantino A, Barlow R, Hoehr C. Validating production of PET radionuclides in solid and liquid targets: Comparing Geant4 predictions with FLUKA and measurements. Appl Radiat Isot 2018;133:61-67.
44. Fan Y, Lu M, Yu XA, He M, Zhang Y, Ma XN, et al. Targeted myocardial hypoxia imaging using a nitroreductase-activatable near-infrared fluorescent nanoprobe. Anal Chem 2019;91:6585-6592. 
45. Lammi C, Zanoni C, Arnoldi A. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. Int J Mol Sci 2015;16:27362-27370.
46. Mohtavinejad N, Amanlou M, Bitarafan-Rajabi A, Pormohammad A, Ardestani MS. Technetium-99m-PEGylated dendrimer-G2-(Dabcyle-Lys6, Phe7)-pHBSP: A novel Nano-Radiotracer for molecular and early detecting of cardiac ischemic region. Bioorg Chem 2020:103731.
47. Meng X, Pei H, Lan C. Icariin exerts protective effect against myocardial ischemia/reperfusion injury in rats. Cell Biochem Biophys 2015;73:229-235.
48. Imamura R, Okumi M, Isaka Y, Ichimaru N, Moriyama T, Imai E, et al. Carbamylated erythropoietin improves angiogenesis and protects the kidneys from ischemia-reperfusion injury. Cell Transplant 2008;17:135-141.
49. Kitamura H, Isaka Y, Takabatake Y, Imamura R, Suzuki C, Takahara S, et al. Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrol Dial Transplant 2008;23:1521-1528.