4-Hydroxy-3,5-di-tret-butyl cinnamic acid restores the activity of the hippocampal mitochondria in rats under permanent focal cerebral ischemia

Document Type : Original Article


Pyatigorsk Medical and Pharmaceutical Institute (Pyatigorsk, Russia, 357532, av. Kalinina 11)


Objective(s): Ischemic stroke is a disease with complex pathogenesis that requires timely and rational pharmacological intervention. One possible treatment for this condition may be to improve mitochondrial function as part of neuroprotective therapy.
Materials and Methods: Cerebral ischemic damage was reproduced by middle cerebral artery permanent occlusion in Wistar male rats. 4-hydroxy-3,5-di-tretbutyl cinnamic acid was injected intraperitoneally in dose range of 25 mg/kg, 50 mg/kg, and 100 mg/kg. The time of administration was 3 days from the ischemia modeling. Further, changes in the rats’ cognitive functions in the Morris water maze test were evaluated, and the state of mitochondrial function in the hippocampal tissue was studied.
Results: The study showed that the use of the studied compound dose-dependently improved mitochondrial function in the rat hippocampus. At doses of 20 mg/kg and 50 mg/kg, administration of the test substance increased citrate synthase activity by 55.1% (P<0.05) and 43.4% (P<0.05), respectively and ATP content by 25.7% (P<0.05) and 23.9% (P<0.05). Also, the intensity of oxidative stress (activity of antioxidant enzymes increase whereas the concentration of TBARS reduces) and apoptosis (calcium content, concentration of apoptosis-inducing factor, and caspase-3 activity decrease; latent time of mitochondrial transition permeability pore opening increase) decreased against the background of administration of the test compound. At a dose of 100 mg/kg, the studied compound showed less effectiveness.
Conclusion: Administration of 25 mg/kg and 50 mg/kg 4-hydroxy-3,5-di-tretbutyl cinnamic acid demonstrated neuroprotection action on hippocampal cells under the conditions of irreversible brain ischemia.


1. Kimura H. Brain and Nerve 2020;72: 311–321. 
2. Guzik A, Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum (Minneap Minn) 2017;23:15-39. 
3. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:439-458. 
4. Renjen PN, Gauba C, Chaudhari D. Cognitive Impairment After Stroke. Cureus.2015;7:e335. 
5. Rosenbaum Halevi D, Bursaw AW, Karamchandani RR, et al. Cognitive deficits in acute mild ischemic stroke and TIA and effects of rt-PA. Ann Clin Transl Neurol 2019;6:466-474. 
6. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581-1587. 
7. Zhang L, Zhang T, Sun Y. A newly designed intensive caregiver education program reduces cognitive impairment, anxiety, and depression in patients with acute ischemic stroke. Braz J Med Biol Res 2019;52:e8533. 
8. Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia - a comprehensive review. BMC Med 2017;15:11. 
9. Savitz SI, Baron JC, Yenari MA, Sanossian N, Fisher M. Reconsidering neuroprotection in the reperfusion era. Stroke 2017;48:3413-3419.
10. Angeloni C, Vauzour D. Natural Products and Neuroprotection. Int J Mol Sci 2019;20:5570. 
11. Yang X, Zhang Y, Xu H, et al. Neuroprotection of Coenzyme Q10 in Neurodegenerative Diseases. Curr Top Med Chem 2016;16:858-866. 
12. Voronkov AV., Pozdnyakov DI. Endothelotropic activity of 4-hydroxy-3,5-di-tret-butylcinnamic acid in the conditions of experimental cerebral ischemia. Research Results Pharmacology 2018;4:1-10. 
13. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 2020;18(7):e3000410. 
14. Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981;1:53-60. 
15. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-858. 
16. Voronkov AV, Pozdnyakov DI, Nigaryan SA, Khouri EI, Miroshnichenko KA, Sosnovskaya AV, Olokhova EA. Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology 2019;7:20-31. 
17. Connolly NMC, Theurey P, Adam-Vizi V, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 2018;25:542-572. 
18. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 2012;7:1235-1246. 
19. Carlsson N, Borde A, Wölfel S, Kerman B, Larsson A. Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem 2011;411:116-121. 
20. Zhyliuk VI, Mamchur VV, Pavlov S. Role of functional state of neuronal mitochondria of cerebral cortex in mechanisms of nootropic activity of neuroprotectors in rats with alloxan hyperglycemia. Eksp i klin Farm 2015; 78: 10-14.
21. Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 1969;114:597-610. 
22. Field ML, Azzawi A, Styles P, Henderson C, Seymour AM, Radda GK. Intracellular Ca2+ transients in isolated perfused rat heart: measurement using the fluorescent indicator Fura-2/AM. Cell Calcium 1994;16:87-100. 
23. Stalnaya ID, Garishvili TG. Method for determination of malondialdehyde using TBA. Modern methods in biochemistry. Medicine Publishing, 1977 (in Russian)
24. Korolyuk MA. Method for determination of catalase activity. Lab. Work 1988; 1:16-19 (in Russian)
25. Woolliams JA, Wiener G, Anderson PH, McMurray CH. Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res Vet Sci 1983;34:253-256.
26. Pierce S, Tappel AL. Glutathione peroxidase activities from rat liver. Biochim Biophys Acta 1978;523:27-36. 
27. Griauzde J, Ravindra VM, Chaudhary N, Gemmete JJ, Pandey AS. Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy. J Clin Neurosci 2019;69:289-291. 
28. Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 2017;140:2079-2092. 
29. Antonelli MC, Guillemin GJ, Raisman-Vozari R, et al. New strategies in neuroprotection and neurorepair. Neurotox Res 2012;21:49-56. 
30. MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis  2019;121:17-33. 
31. Sorrentino V, Menzies KJ, Auwerx J. Repairing Mitochondrial Dysfunction in Disease. Annu Rev Pharmacol Toxicol 2018;58:353-389. 
32. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 2018;592:692-702. 
33. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep 2008;41:11-22. 
34. McBride DW, Zhang JH. Precision stroke animal models: The permanent MCAO model should be the primary model, not transient MCAO. Transl Stroke Res 2017;10.1007/s12975-017-0554-2. 
35. Voronina TA. Mexidol. Spectrum of pharmacological activity. Zhurnal Nevrologii I Psikhiatrii Imeni S.S. Korsakova 2012;  112:86–90.
36. Gromova OA, Torshin IY, Stakhovskaya LV, Pepelyaev EG, Semenov VA, Nazarenko A G. Opyt primeneniia meksidola v nevrologicheskoĭ praktike (Experience with mexidol in neurological practice). Zhurnal Nevrologii I Psikhiatrii Imeni S.S. Korsakova 2018;118: 97–107. 
37. Parks RJ, Murphy E, Liu JC. Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol 2018;1782:187-196. 
38. Bonora M, Morganti C, Morciano G, et al. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep 2017;18:1077-1089. 
39. Šileikytė J, Forte M. The mitochondrial permeability transition in mitochondrial disorders. Oxid Med Cell Longev 2019;2019:3403075. 
40. Agostinho FR, Réus GZ, Stringari RB, et al. Treatment with olanzapine, fluoxetine and olanzapine/fluoxetine alters citrate synthase activity in rat brain. Neurosci Lett 2011;487:278-281. 
41. Valenti D, de Bari L, De Filippis B, Ricceri L, Vacca RA. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas. Anal Biochem 2014;444:25-31. 
42. Deng-Bryant Y, Leung LY, Caudle K, Tortella F, Shear D. Cognitive evaluation using morris water maze in neurotrauma. Methods Mol Biol 2016;1462:539-551.