1. Dolatkhah R, Somi MH, Jafarabadi MA, Hosseinalifam M, Sepahi S, Belalzadeh M, et al. Breast cancer survival and incidence: 10 Years Cancer Registry Data in the Northwest, Iran. Int J Breast Cancer 2020; 2020:1–6.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 0:caac.21660.
3. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77–106.
4. Moo TA, Sanford R, Dang C, and Morrow M. Overview of Breast Cancer Therapy. Vol. 13, PET Clinics. 2018; 339–354.
5. Berardi R, Morgese F, Rinaldi S, Torniai M, Mentrasti G, Scortichini L, et al. Benefits and limitations of a multidisciplinary approach in cancer patient management. Cancer Manag Res 2020; 12:9363–9374.
6. Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol 2018; 8.
7. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, and Syed-Sha-Qhattal H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer (Auckl) 2015; 9:17–34.
8. Vuong TV. Natural products and their derivatives with antibacterial, anti-oxidant and anticancer activities. Antibiotics 2021; 10:70-72.
9. Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, and de Diego Puente T. A Compressive Review about Taxol®: History and Future Challenges. Molecules 2020; 25:5986.
10. Weaver BA. How Taxol/paclitaxel kills cancer cells. Bement W, editor. Mol Biol Cell 2014; 25:2677–2681.
11. Carvalho C, Santos R, Cardoso S, Correia S, Oliveira P, Santos M, et al. Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem 2009; 16:3267–3285.
12. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways. Pharmacogenet Genomics 2011; 21:440–446.
13. Qin J, Wang W, and Zhang R. Novel natural product therapeutics targeting both inflammation and cancer. Chin J Nat Med 2017; 15:401–416.
14. Ashley RE and Osheroff N. Natural products as topoisomerase II poisons: Effects of thymoquinone on DNA cleavage mediated by human topoisomerase IIα. Chem Res Toxicol 2014; 27:787–793.
15. Zhao Y, Butler EB, and Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4:e532.
16. Dalla Via L, García-Argáez AN, Martínez-Vázquez M, Grancara S, Martinis P, and Toninello A. Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des 2014; 20:223–244.
17. Endo S, Hoshi M, Matsunaga T, Inoue T, Ichihara K, and Ikari A. Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochem Biophys Res Commun 2018; 497:437–443.
18. Falzone L, Salomone S, and Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 2018; 9:1-26.
19. E. M. Eid E, S. Alanazi A, Koosha S, A. Alrasheedy A, Azam F, M. Taban I, et al. Zerumbone induces apoptosis in breast cancer cells by targeting αvβ3 integrin upon co-administration with TP5-iRGD peptide. Molecules 2019; 24:2554-2568.
20. Girisa S, Shabnam B, Monisha J, Fan L, Halim C, Arfuso F, et al. Potential of zerumbone as an anti-cancer agent. Molecules 2019; 24:734-753.
21. Sellés Vidal L, Kelly CL, Mordaka PM, and Heap JT. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim Biophys Acta - Proteins Proteomics 2018; 1866:327–347.
22. Aung TN, Qu Z, Kortschak RD, and Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci 2017; 18.
23. Jamalzadeh L, Ghafoori H, Aghamaali M, and Sariri R. Induction of apoptosis in human breast cancer MCF-7 cells by a semisynthetic derivative of artemisinin: A caspase-related mechanism. Iran J Biotechnol 2017; 15:157–165.
24. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, and Epandy MAKMS. Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques. J Ethnopharmacol 2019; 236:466–473.
25. Nagata S, Suzuki J, Segawa K, and Fujii T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 2016; 23:952–961.
26. Ucker DS and Levine JS. Exploitation of Apoptotic Regulation in Cancer. Front Immunol 2018; 9:241.
27. Siddiqui WA, Ahad A, and Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 2015; 89:289–317.
28. Sjostrom J. How apoptosis is regulated, and what goes wrong in cancer. BMJ 2001; 322:1538–1539.
29. Park M-T and Lee S-J. Cell cycle and cancer. J Biochem Mol Biol 2003; 36:60–65.
30. Willis N and Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div 2009; 4:13.
31. Liu J-D, Wang Y-J, Chen C-H, Yu C-F, Chen L-C, Lin J-K, et al. Molecular mechanisms of G0/G1 cell-cycle arrest and apoptosis induced by terfenadine in human cancer cells. Mol Carcinog 2003; 37:39–50.
32. Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy P-A, and Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells 2019; 8:793.
33. Schieber M and Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Curr Biol 2014; 24:R453–R462.
34. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 2007; 35:495–516.
35. Naik E and Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208:417–420.
36. Iglesias-Guimarais V, Gil-Guiñon E, Sánchez-Osuna M, Casanelles E, García-Belinchón M, Comella JX, et al. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3’-OH single-strand DNA breaks. J Biol Chem 2013; 288:9200–9215.
37. Semenov D V, Aronov PA, Kuligina E V, Potapenko MO, Richter VA. Oligonucleosomal DNA fragmentation in MCF-7 cells undergoing palmitate-induced apoptosis. Biochem 2003; 68:1335–1341.
38. Porter AG and Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999; 6:99–104.
39. Wajant H, Pfizenmaier K, and Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10:45–65.
40. Ma Y, Ren Y, Dai Z-J, Wu C-J, Ji Y-H, and Xu J. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med 2017; 26:421–426.
41. Dennis KL, Blatner NR, Gounari F, and Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol 2013; 25:637–645.
42. Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, and Vadivelu J. Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis 2013; 4:1–10.
43. Zhou J, Wang G, Chen Y, Wang H, Hua Y, and Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med 2019; 23:4854–4865.
44. Rapoport B and Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci 2019; 20:959.
45. Bose S, Panda AK, Mukherjee S, and Sa G. Curcumin and tumor immune-editing: resurrecting the immune system. Cell Div 2015; 10:6-19.
46. Huang F-Y, Lei J, Sun Y, Yan F, Chen B, Zhang L, et al. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology 2018; 7:e1446720.