Effects of integrin-linked kinase on protein kinase b, glycogen synthase kinase-3β, and β-catenin molecules in ovarian cancer cells

Document Type : Original Article

Authors

1 Anadolu University, Faculty of Education, 26470, Eskişehir, Turkey

2 Anadolu University, Faculty of Pharmacy, Department of Biochemistry Science, 26470, Eskişehir, Turkey

Abstract

Objective(s): This study examines the impact of integrin-linked kinase (ILK), protein kinase B (AKT), glycogen synthase kinase-3β (GSK-3β), and β-catenin signal molecules in SKOV-3 ovarian cancer cells adhered to fibronectin. 
Materials and Methods: Expression levels of α4, αv, β1, and β6 integrin subunits known as the fibronectin ligand were investigated with the flow cytometry technique. The effects of ILK, AKT, GSK-3β, and β-catenin on the binding of SKOV-3 cells to fibronectin were examined by using the Real-Time Cellular Analysis (RTCA) method. Additionally, the interaction of these proteins was investigated by using Western blot analysis. 
Results: The results show that the expression levels of integrin subunits were ranked as αv (67.8%), followed by α4 (48.55%), β6 (32.05%), and β1 (31%) on SKOV-3 cells. RTCA results showed that ILK (10 µM Cpd22), GSK-3β (50 μM GSK-3β inhibitor-XI), AKT (35 µM FPA 124), and β-catenin (50 μM cardamonin) inhibitors decreased significantly (P<0.01) binding to fibronectin at 24 hr. Western studies in SKOV-3 cells adhered to fibronectin have shown that in inhibition of ILK, AKT expression was strongly inhibited, whereas, in the inhibition of AKT, ILK expression was strongly inhibited. Furthermore, the expression of β-catenin is partially reduced in inhibition of these two molecules. In β-catenin inhibition, AKT and ILK expressions are also strongly inhibited.
Conclusion: ILK, AKT, GSK-3β, and β-catenin were found to be fundamental molecules in binding of SKOV-3 cells to fibronectin. ILK and AKT affect strongly the level of expression of each other, and both also affect the signal path of β-catenin. 

Keywords


1. Reid HB, Permuth BJ, Sellers AT. Epidemiology of ovarian cancer: A review. Cancer Biol Med 2017; 14:9-32. 
2. Holschneider CH, Berek JS. Ovarian cancer: Epidemiology, biology, and prognostic factors. Semin Surg Oncol 2000; 19: 3–10. 
3. Morgan SL, Medina JE, Taylor MM, Dinulescu DM. Targeting platinum resistant disease in ovarian cancer. Curr Med Chem 2014; 21: 3009-3020. 
4. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol 2010; 177:1053-1064. 
5. Kenny HA., Chiang CY, White EA, Schryver EM, Habis M, Romero IL et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest 2014; 124: 4614-4628. 
6. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10: 9-22. 
7. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L. Fibronectin-integrin interactions. Front Biosci 1997; 2: 126-146. 
8. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 1996; 4;379: 91-96. 
9. McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase-essential roles in physiology and cancer biology. J Cell Sci 2008; 121: 3121-3132. 
10. Yoganathan N, Yee A, Zhang Z, Leung D, Yan J, Fazli L, Kojic DL et al. Integrin-linked kinase, a promising cancer therapeutic target: biochemical and biological properties. Pharmacology Ther 2002; 93: 233–242. 
11. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J. ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 2006; 208: 91-99. 
12. Graff JR, Deddens JA, Konicek BW, Colligan BM, Hurst BM, Harry W. Carter HW, Carter JH. Integrin-linked Kinase Expression Increases with Prostate Tumor Grade1. Clin Cancer Res 2001; 7: 1987-1991.
13. Ahmed N, Riley C, Oliva K, Stutt E, Rice GE, Quinn M.A. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. J Pathol 2003; 201: 229-37.
14. Persad S, Dedhar S. The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev. 2003; 22: 375-384.
15. Bruney L, Liu Y, Grisoli A, Ravosa MJ, Stack MS. Integrin-linked kinase activity modulates the pro-metastatic behavior of ovarian cancer cells. Oncotarget 2016; 7: 21968-21981. 
16. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 1998; 15;95: 11211-11216. 
17. Hemmings BA and Restuccia DF. PI3K-PKB/Akt Pathway. Cold Spring Harb Perspect Biol 2015; 7: a011189.
18. Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer.  Semin Cancer Biol 2019; 56: 25-36. 
19. Mahmood T and Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci 2012; 4: 429-434. 
20. Rathinam R and Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev 2010; 29: 223–237. 
21. Ginocotti FG, Ruoslahti E. Integrin signalling. Science 1999; 285: 1028-1032. 
22. Wu YJ, Pagel MA, Muldoon LL, Fu R, Neuwelt EA. High αv integrin level of cancer cells is associated with development of brain metastasis in athymic rats. anticancer res. 2017; 37: 4029‐4040. 
23. Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S. 2003. αv integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 2003; 20;22: 1688-1702. 
24. Lössner D, Abou-Ajram C, Benge A, Aumercier M, Schmitt M, Reuning U. Integrin αvβ3 upregulates integrin-linked kinase expression in human ovarian cancer cells via enhancement of ILK gene transcription. J Cell Physiol 2009; 220: 367-75. 25. Ahmed N, Oliva K, Rice GE, Quinn MA. Cell-free 59 kDa immunoreactive integrin-linked kinase: a novel marker for ovarian carcinoma. Clin Cancer Res 2004; 1;10: 2415-2420. 
26. Liu Q, Xiao L, Yuan D, Shi X, Li P. Silencing of the integrin-linked kinase gene induces the apoptosis in ovarian carcinoma. J Recept Signal Transduct Res 2012; 32: 120-127. 
27. Li Q, Li C, Zhang YY, Chen W, Lv JL, Sun J, You QS. Silencing of integrin-linked kinase suppresses in vivo tumorigenesis of human ovarian carcinoma cells.  Mol Med Rep 2013; 7: 1050-1054. 
28. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, Lynch HT, Smyrk TC. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 2002; 23: 201-205.
29. Vouret-Craviari V, Boulter E, Grall D, Matthews C, Van Obberghen-Schilling E. ILK is required for the assembly of matrix-forming adhesions and capillary morphogenesis in endothelial cells. J Cell Sci 2004; 117: 4559-4569. 
30. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 ;8:1711-1717. 
31. Bienz M. beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 2005;  26;15:R64-67.
32. Rask K, Nilsson A, Brännström M, Carlsson P, Hellberg P, Janson PO, Hedin L, Sundfeldt K. Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer 2003; 6;89:1298-1304.
33. Velling T, Stefansson A, Johansson S. EGFR and beta1 integrins utilize different signaling pathways to activate Akt. Exp Cell Res 2008; 15;314: 309-316.
34. Zhurinsky J, Shtutman M, Ben-Ze’ev A. Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 2000; 113: 3127-3139.
35. Cho M, Ryu M, Jeong Y, Chung YH, Kim DE, Cho HS, Kang S, Han JS, Chang MY, Lee CK, Jin M, Kim HJ, Oh S. Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling. Biochem Biophys Res Commun  2009; 390: 500-505. 
36. Chen H, Shi D, Niu P, Zhu Y, Zhou J. Anti-inflammatory effects of cardamonin in ovarian cancer cells are mediated via mtor suppression. planta med. 2018; 84: 1183-1190. 
37. Sari Kiliçaslan SM, Öğünç Y, Apaydin E, Seller Z. Alterations in mRNA expression of apoptosis-releated genes after treatment of SKOV-3 cells with cardamonin. Fresenius Environmental Bull 2018; 27: 12A: 8787– 8795.