1. Sung H, Ferlay J, Siege RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249.
2. Li S, Wu J, Huang O, He J, Zhu L, Chen W, et al. HER2 positivity is not associated with adverse prognosis in high-risk estrogen receptor-positive early breast cancer patients treated with chemotherapy and trastuzumab. Breast 2020; 54:235-241.
3. Jagosky M, Tan AR. Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: a review of the emerging clinical data. Breast Cancer (Dove Med Press) 2021; 13: 393–407.
4. Gandullo‐Sánchez L, Capone E, Ocaña A, Iacobelli S, Sala G, Pandiella A. HER3 targeting with an antibody‐drug conjugate bypasses resistance to anti‐HER2 therapies. EMBO Mol Med 2020; 12: e11498.
5. Yang X, Wu D, MD, Yuan S. Tyrosine kinase inhibitors in the combination therapy of HER2 positive breast cancer. Technol Cancer Res Treat 2020; 19: 1533033820962140.
6. Rosenzweig SA. Acquired resistance to drugs targeting tyrosine kinases. Adv Cancer Res 2018; 138: 71–98.
7. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complement Alternat Med 2018; 2018: 8324696.
8. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, et al. Pyrotinib or Lapatinib Combined with Capecitabine in HER2-Positive Metastatic Breast Cancer with Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. J Clin Oncol 2019; 37: 2610–2619.
9. Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA. et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in her2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol 2020; 38: 3138–3149.
10. Nahta R, Yuan LX, Du Y, Esteva FJ. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Mol Cancer Ther 2007; 6:667-74.
11. Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother 2018; 106: 1227-1235.
12. LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021; 42: 77–96.
13. Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res 2019; 38: 491.
14. Sahra IB, Laurent K, Loubat A, Giorgetti-Peraldi S,Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576-3586.
15. Cunhaa V, Cotrima HP, Rochab R, Carvalhoa K, Lins-Kusterer L. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: A systematic review. Ann Hepatol 2020; 19: 232–237.
16. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharmacol Sci. 2018; 39: 867–878.
17. Shi P, Liu W, Wang H, Li F, Zhang H, Wu Y, et al. metformin suppresses triple-negative breast cancer stem cells by targeting KLF5 for degradation. Cell Discov 2017; 3: 17010.
18. Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman M, Ouhtit A. The power of phytochemicals combination in cancer chemoprevention. J Cancer 2020; 11:4521-4533.
19. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.
20. Copeland-Halperin RS, Liu JE, Yub AF. Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol 2019; 34: 451–458.
21. Jafari L, Akhter N. Heart failure prevention and monitoring strategies in HER2-positive breast cancer: a narrative review. Breast Cancer Res Treat 2021; 186: 295–303.
22. Jhaveri TZ, Woo J, Shang X, Park BH, Gabrielson E. AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer. Oncotarget 2015; 6:14754-14765.
23. Jafari-Gharabaghlou D, Pilehvar-Soltanahmadi Y, Dadashpour M, Mota A, et al. Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iran J Basic Med Sci 2018; 21: 1167–1173.
24. Besli N, Yenmis G, Tunçdemir M, Sarac EY, Doğan S, Solakoğlu S. Metformin suppresses the proliferation and invasion through NF-kB and MMPs in MCF-7 cell line. Turk J Biochem 2020; 45: 295–304.
25. Abo-Zeid MAM, Abo-Elfadl MT, Gamal-Eldeen AM. Evaluation of lapatinib cytotoxicity and genotoxicity on MDA-MB-231 breast cancer cell line. Environ Toxicol Pharmacol 2019; 71:103207.
26. Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R. Lapatinib Inhibits Breast Cancer Cell Proliferation by Influencing PKM2 Expression. Technol Cancer Res Treat 2018; 17: 1–12.
27. Guo L,Cui J,Wang H, Medina R, Zhang S, Zhang X, et al. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. Mol Ther Oncolytics 2021; 20: 119–131.
28. Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 axis in overcoming resistance in breast cancer. Front Cell Dev Biol 2021;9: 641449.
29. Jiang N, Dai O, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47: 4587–4629.
30. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27:3297-3302.
31. Oliveira-Ferraros C, Vazquez-Martin A, Menendez JA. Genome-wide inhibitory impact of the AMPK activator metformin on kinesins, tubulins, histones, auroras and polo like kinases M-phase cell cycle genes in human breast cancer cells. Cell Cycle 2009; 8:1633-1636.
32. Berstein LM, Yue W, Wang JP, Santen RJ. Isolated and combined action of tamoxifen and metformin in wild-type, tamoxifen-resistant, and estrogen deprived SKBR3cells. Breast Cancer Res Treat 2010; 128: 109–117.
33. Topcul M and Cetin I. Effects of metformin on cell kinetic parameters of MCF-7 breast cancer cells in vitro. Asian Pac J Cancer Prev 2015; 16:2351–2354.
34. Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 2011; 9: 603-615.
35. Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol 2016; 82:943–956.
36. Steelman LS, Navolanic P, Chappell WH, Abrams SL, Wong EW, Martelli AM, et al. Involvement of AKT and mTOR in chemotherapeutic- and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle 2011; 10:3003–3015.
37. Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 2018; 53: 2319-2331.
38. Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, et al. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int J Nanomedicine. 2016; 11: 6401–6420.
39. Park S, Kim D, Dan HC, Chen H, Testa JR, Cheng JQ. Identification of an AKT interaction protein, PHF20/TZP, that transcriptionally regulates p53. J Biol Chem 2016; 287:11151–11163.