Effects of prolactin on movement disorders and APOE, GFAP, and PRL receptor gene expression following intracerebral hemorrhage in rats

Document Type : Original Article

Authors

1 Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Division of Neuro-Cognitive Sciences, Psychiatry and Behavioural Sciences Research center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran

5 Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

6 Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

8 Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran

Abstract

Objective(s): Intracerebral hemorrhage (ICH) occurs mostly in the striatum. In ICH, blood prolactin level increases 3-fold. The effects of intracerebroventricular injection (ICV) of prolactin on motor disorders will be investigated. 
Materials and Methods: This study was performed on 32 male Wistar rats in 4 groups: sham, ICH, and prolactin with 1 μg/2 μl (P1) and 2 μg/2 μl (P2) doses. 
Results: The weight of animals on days 1 (P˂0.01), 3, and 7 (P˂0.05) in the sham and P2 groups increased compared with the ICH group. Neurological Deficit Score (NDS) in ICH and P1 groups decreased, and increased compared with sham and ICH groups (P˂0.001), respectively. NDS in the P1 group increased compared with the P2 group on days 1 (P˂0.0 5), 3, and 7 (P˂0.001). The duration time of rotarod in ICH and P1 groups decreased and increased compared with sham and ICH groups (P˂0.001), respectively. The duration time of rotarod in the P1 group on days 3 and 7 increased compared with the P2 group (P˂0.001). Travel distance in days 1(P˂0.01), 3(P˂0.001), and 7(P˂0.01) decreased in the ICH group. Prolactin receptor (PRL receptor) expression in ICH, P1, and P2 groups increased compared with sham and ICH groups (P˂0.001). Glial fibrillary acidic protein (GFAP) expression (P˂0.001) and apolipoprotein E (APOE) (P˂0.01) expression in the ICH group increased compared with the sham group. GFAP and APOE expression in the P1 group increased compared with the ICH group (P˂0.001). APOE expression in the P1 group increased compared with the P2 group (P˂0.001). 
Conclusion: According to the results, prolactin reduces movement disorders.

Keywords


1. Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N, et al. ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics 2004; 4:2242-2251. 
2. Verstraeten S, Mark R, Sitskoorn M. Motor and cognitive impairment after stroke: a common bond or a simultaneous deficit. Stroke Res Ther 2016; 1:1-10. 
3. Cai JC, Liu W, Lu F, Kong WB, Zhou XX, Miao P, et al. Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage. Exp Ther Med 2018; 15:4131-4138. 
4. Rojas H, Lekic T, Chen W, Jadhav V, Titova E, Martin R, et al. The antio-xidant effects of melatonin after intracerebral hemorrhage in rats. Cerebral Hemorrhage: Springer; 2008:19-21. 
5. Seghatoleslam M, Jalali M, Nikravesh MR, Hosseini M, Alamdari DH, Fazel A. Therapeutic benefit of intravenous administration of human umbilical cord blood-mononuclear. Iran J Basic Med Sci 2021; 15:860-872. 
6. Rektor I, Bareš M, Kaňovský P, Brázdil M, Klajblová I, Streitová H, et al. Cognitive potentials in the basal ganglia— frontocortical circuits: an intracerebral recording study. Exp Brain Res 2004; 158:289-301. 
7. Klimenko LL, Skalny AV, Turna AA, Tinkov AA, Budanova MN, Baskakov IS, et al. Serum trace element profiles, prolactin, and cortisol in transient ischemic attack patients. Biol Trace Elem Res 2016; 172:93-100. 
8. Ochoa-Amaya J, Malucelli B, Cruz-Casallas P, Nasello A, Felicio L, Carvalho-Freitas M. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats. Neuroimmunomodulation 2010; 17:386-395. 
9. Ortiz-Pérez A, Limón-Morales O, Rojas-Castañeda J, Cerbón M, Picazo O. Prolactin prevents the kainic acid-induced neuronal loss in the rat hippocampus by inducing prolactin receptor and putatively increasing the VGLUT1 overexpression. Neurosci Lett 2019; 694:116-123.
 10. Skalny AV, Klimenko LL, Turna AA, Budanova MN, Baskakov IS, Savostina MS, et al. Serum trace elements are interrelated with hormonal imbalance in men with acute ischemic stroke. J Trace Elem Med Biol 2017; 43:142-147. 
11. Grattan D, Kokay I. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 2008; 20:752-763. 
12. Yousefvand S, Vafaee F, Dolatshad H. The protective effects of prolactin on brain injury. Life Sci 2020; 263:118547-118570.
13. Tejadilla D, Cerbón M, Morales T. Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neurosci 2010; 169:1178-1185.
14. Kirk S, Xie T, Steyn F, Grattan D, Bunn S. Restraint stress increases prolactin-mediated phosphorylation of signal transducer and activator of transcription 5 in the hypothalamus and adrenal cortex in the male mouse. J Neuroendocrinol 2017; 29:1-21. 
15. Levine S, Muneyyirci-Delale O. Stress-induced hyperprolactinemia: pathophysiology and clinical approach. Obstet Gynecol Int 2018; 1-6. 
16. Möderscheim T, Gorba T, Pathipati P, Kokay I, Grattan D, Williams C, et al. Prolactin is involved in glial responses following a focal injury to the juvenile rat brain. Neuroscience 2007; 145:963-973. 
17. Anagnostou I, Reyes-Mendoza J, Morales T. Glial cells as mediators of protective actions of prolactin (PRL) in the CNS. Gen Comp Endocrinol 2018; 265:106-110. 
18. Reyes-Mendoza J, Morales T. Post-treatment with prolactin protects hippocampal CA1 neurons of the ovariectomized female rat against kainic acid-induced neurodegeneration. Neuroscience 2016; 328:58-68. 
19. Cudaback E, Yang Y, Montine TJ, Keene CD. APOE genotypedependent modulation of astrocyte chemokine CCL3 production. Glia 2015; 63:51-65. 
20. Wang X, Li R, Zacharek A, Landschoot-Ward J, Wang F, Wu K-HH, et al. Administration of downstream ApoE attenuates the adverse effect of brain ABCA1 deficiency on stroke. Int J Mol Sci 2018; 19:3368 -3386.
21. Suidan GL, Ramaswamy G. Targeting apolipoprotein E for Alzheimer’s disease: An industry perspective. Int J Mol Sci 2019; 20:2161-2174.
22. Council NR. Guide for the care and use of laboratory animals: National Academies Press; 2010. 
23. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. hard cover edition: Elsevier; 2006.
24. Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, Tang J, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp 2012; 129:1-5.
25. Sansing LH, Kasner SE, McCullough L, Agarwal P, Welsh FA, Kariko K. Autologous blood injection to model spontaneous intracerebral hemorrhage in mice. J Vis Exp 2011; 54:1-3.
26. Wen Z, Mei B, Li H, Dou Y, Tian X, Shen M, et al. P2X7 participates in intracerebral hemorrhage-induced secondary brain injury in rats via MAPKs signaling pathways. Neurochem Res 2017; 42:2372-2383.
27. Garcia JH, Wagner S, Liu K-F, Hu X-j. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke 1995; 26:627-635.
28. Cabrera V, Ramos E, González-Arenas A, Cerbón M, Camacho-Arroyo I, Morales T. Lactation reduces glial activation induced by excitotoxicity in the rat hippocampus. J Neuroendocrinol 2013; 25:519-527.
29. Augustine RA, Ladyman SR, Bouwer GT, Alyousif Y, Sapsford TJ, Scott V, et al. Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J Gen Physiol 2017; 595:3591-3605. 
30. Koch KA, Wingfield JC, Buntin JD. Prolactin-induced parental hyperphagia in ring doves: are glucocorticoids involved? Horm Behav 2004; 46:498-505.
31. Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C, Rebeck GW, et al. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012; 60:559-569.
 32. Galho A, Cordeiro M, Ribeiro S, Marques M, Antunes M, Luz D, et al. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnol 2016; 27:175101-175115.
 33. Abdi T, Mahmoudabady M, Marzouni HZ, Niazmand S, Khazaei M. Ginger (zingiber officinale roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats. Can J Diabetes 2020; 45:220-227.
34. Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shahpari M, Zarifkar AH. Effect of recombinant insulinlike growth factor-2 injected into the hippocampus on memory impairment following hippocampal intracerebral hemorrhage in rats. Galen Med J 2018; 7:1353-1363. 
35. Crenn P, Hamchaoui S, Bourget-Massari A, Hanachi M, Melchior J-C, Azouvi P. Changes in weight after traumatic brain injury in adult patients: a longitudinal study. Clin Nutr 2014; 33:348-353.
36. Tölli A, Borg J, Bellander B-M, Johansson F, Höybye C. Pituitary function within the first year after traumatic brain injury or subarachnoid haemorrhage. J Endocrinol Invest 2017; 40:193-205.
37. Jönsson A-C, Lindgren I, Norrving B, Lindgren A. Weight loss after stroke: a population-based study from the lund stroke register. Stroke 2008; 39:918-923.
38.Mangoura D, Pelletiere C, Leung S, Sakellaridis N. Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 2000; 18:693-704.
39. Rivera JC, Aranda J, Riesgo J, Nava G, Thebault S, LópezBarrera F, et al. Expression and cellular localization of prolactin and the prolactin receptor in mammalian retina. Exp Eye Res 2008; 86:314-321.
40. Arnold E, Thebault S, Baeza-Cruz G, Zamarripa DA, Adán N, Quintanar-Stéphano A, et al. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration. J Neurosci 2014; 34:1868-1878. 
41. Jørgensen MB, Finsen BR, Jensen MB, Castellano B, Diemer NH, Zimmer J. Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp neurol 1993; 120:70-88. 
42. Smith C, Graham D, Murray L, Stewart J, Nicoll J. Association of APOE e4 and cerebrovascular pathology in traumatic brain injury. J Neurol Neurosurg Psychiatry 2006; 77:363-366. 
43. Kim E, Woo M-S, Qin L, Ma T, Beltran CD, Bao Y, et al. Daidzein augments cholesterol homeostasis via ApoE to promote functional recovery in chronic stroke. J Neurosci 2015; 35:15113-15126. 
44. Cramer PE, Cirrito JR, Wesson DW, Lee CD, Karlo JC, Zinn AE, et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 2012; 335:1503-1506.