Pathogenesis of Epilepsy: Challenges in Animal Models

Document Type : Review Article


Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia



Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models.


1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P,
et al. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46:470–472.
2. World Health Organization (WHO). Epilepsy: Factsheet. c2009 [cited 2012 Oct 9]. Available at:
3. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia 2010; 51:883–890.
4. Mac TL, Tran DS, Quet F, Odermatt P, Preux PM, Tan CT. Epidemiology, aetiology and clinical management of epilepsy in Asia: A systematic review. Lancet Neurol 2007; 6:533–543.
5. Engel JJ. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of
ILAE Task Force on classification and Terminology. Epilepsia 2001; 42:796–803.
6. Commission on Classification and Terminology of the International League Against Epilepsy (ILAE). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30:389–399.
7. Loscher W, Brandt C. Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research. Pharmacol Rev 2010; 62:668–700.
8. Banerjee PN, Filippi D, Hauser WA. The descriptive epidemiology of epilepsy – A review. Epilepsy Res 2009; 85:31–45.
9. Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: Contributions of the Rochester epidemiology project. Mayo Clin Proc 1996; 71:570–575.
10. Engel JJ. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26:141–150.
11. Loscher W, Gernert M, Heinemann U. Cell and gene therapies in epilepsy-Promising avenues or blind alleys? Trends Neurosci 2008; 31:62–73.
12. Aroniadou-Anderjaska V, Fristch B, Qashu F, Braga MF. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102–116.
13. Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 2002; 50:105–123.
14. Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011; 20:359–368.
15. Sloviter RS, Bumanglag AV. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2012; 69:3-15.
16. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011; 10:173–186.
17. Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 2002; 1:173–181.
18. William PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ,
et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 2009; 29:2103–2112.
19. Pitkanen A, Bolkvadzea T, Immonenc R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497:163–171.
20. Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 1999; 36:189–204.
21. Voglis G, Tavernarakis N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep 2006; 7:1104–1110.
22. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005; 179:4–29.
23. Seifert G, Schroder W, Hinterkeuser S, Schumacher T, Schramm J, Steinhauser C. Changes in
Epileptogenesis and Animal Models Yow HY et al
Iran J Basic Med Sci, Vol. 16, No. 11, Nov 2013
flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia 2002; 43:162–167.
24. Debanne D, Thompson SM, Gahwiler BH. A brief period of epileptiform activity strengthens excitatory synapses in the rat hippocampus in vitro. Epilepsia 2006; 47:247–256.
25. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in rective astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 2000; 12:2333–2344.
26. DeLorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229–266.
27. Yi J, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006; 48:394–403.
28. Touret M, Parrot S, Denoroy L, Berlin MF, Didier-Bazes M. Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci 2007; 8:69–75.
29. Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M,
et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain 2005; 128:454–471.
30. Chapman AG. Glutamate and epilepsy. J Nutr 2000; 130:1043S–1045S.
31. Acharya JN. Recent advances in epileptogenesis. Curr Sci 2002; 82:679–688.
32. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy. Prog Neurobiol 2004; 73:1–60.
33. Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42:8–12.
34. Olsen RW, Avoli M. GABA and epileptogenesis. Epilepsia 1997; 38:399–407.
35. Meldrum BS. GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Clin Pharm 1989; 27:3S–11S.
36. Buzzi A, Chikhladze M, Falcicchia C, Paradiso B, Lanza G, Soukupova M,
et al. Loss of cortical GABA terminals in Unverricht-Lundborg disease. Neurobiol Dis 2012; 47:216–224.
37. Schwarzer C, Tsunashima K, Wanzenbock C, Fuchs K, Sieghart W, Sperk G. GABA
A receptor subunits in the rat hippocampus II: Altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 1997; 80:1001–1017.
38. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABA
A receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998; 4:1166–1172.
39. Dinkel K, Meinck HM, Jury KM, Karges W, Richter W. Inhibition of γ-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol 1998; 44:194–201.
40. Butler MH, Solimena M, Dirkx R, Hayday A, De Camilli P. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J Exp Med 1993; 178:2097–2106.
41. Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 2003; 23:2440–2452.
42. Knopp A, Frahm C, Fidzinski P, Witte OW, Behr J. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Brain 2008; 131:1516–1527.
43. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38:1083–1152.
44. Bagdy G, Kecskemeti V, Riba P, Jakus R. Serotonin and epilepsy. J Neurochem 2007; 100:857–873.
45. Dailey JW, Yan Q, Adams-Curtis LE, Ryu JR, Ko KH, Mishra PK,
et al. Neurochemical correlates of antiepileptic drugs in the genetically epilepsy-prone rat (GEPR). Life Sci 1996; 58:259 – 266.
46. Dailey JW, Mishra PK, Ko KH, Penny JE, Jobe PC. Serotonergic abnormalities in central nervous system of seizure-naïve genetically epilepsy-prone rats. Life Sci 1992; 50:319–326.
47. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin 1A receptors. Proc Natl Acad Sci USA 2000; 97:14731–14736.
48. Applegate CD, Tecott LH. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol 1998; 154:522–530.
49. Merlet I, Ryvlin P, Costes N, Dufournel D, Isnard J, Failenot I,
et al. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. Neuroimage 2004; 22:886–896.
50. Tully K, Bolshakov VY. Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 2010; 3:15.
51. Corcoran ME, Mason ST. Role of forebrain catecholamines in amygdaloid kindling. Brain Res 1980; 190:473–484.
52. Szot P, Weinshenker D, White SS, Robbins CA, Rust NC, Schwartzkroin PA,
et al. Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci 1999; 19:10985–10992.
53. Giorgi FS, Ferrucci M, Lazzeri G, Pizzanelli C, Lenzi P, Alessandrl MG,
et al. A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. Eur J Neurosci 2003; 17:2593–2601.
54. Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 2004; 28:507–524.
55. Fedi M, Berkovic SF, Scheffer IE, O’Keefe G, Marini C, Mulligan R,
et al. Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2008; 71:795–798.
56. Ciumas C, Robins Wahlin TB, Jucaite A, Lindstrom P, Halldin C, Savic I. Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 2008; 71:788–794.
57. Benardo LS, Prince DA. Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 1982; 297:76–79.
Yow HY et al Epileptogenesis and Animal Models
Iran J Basic Med Sci, Vol. 16, No. 11, Nov 2013
58. Barone P, Palma V, DeBartolomeis A, Tedeschi E, Muscettola G, Campanella G. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium–pilocarpine. Eur J Pharmacol 1991; 195:157–162.
59. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20:8643–8649.
60. Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y. Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 2004; 89:834–843.
61. Werhahn KJ, Landvogt C, Klimpe S, Buchholz H, Yakushev I, Siessmeier T,
et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia 2006; 47:1392–1396.
62. Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70S:S206–S217.
63. Graves TD. Ion channels and epilepsy. Q J Med 2006; 99:201:217.
64. Kass RS. The channelopathies: Novel insights into molecular and genetic mechanism of human disease. J Clin Invest 2005; 115:1986–1989.
65. Hirose S, Okada M, Kaneko S, Mitsudome A. Are some idiopathic epilepsies disorders of ion channels? A working hypothesis. Epilepsy Res 2000; 41:191–204.
66. Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: Unravelling the genetics of the epilepsies. Lancet Neurol 2008; 7:231–245.
67. Berkovic SF, Mulley JC, Scheffer IE, Petrou S. Human epilepsies: Interaction of genetic and acquired factors. Trends Neurosci 2006; 29:391–397.
68. Scheffer IE, Berkovic SF. The genetics of human epilepsy. Trends Pharmacol Sci 2003; 24:428–433.
69. Richichi C, Brewster AL, Bender RA, Simeone TA, Zha Q, Yin HZ,
et al. Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated channels. Neurobiol Dis 2008; 29:297–305.
70. Kuisle M, Wanaverbecq N, Brewster AL, Frere SGA, Pinault D, Baram TZ,
et al. Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. J Physiol 2006; 575:83–100.
71. Poolos NP. The h-channel: A potential channelopathy in epilepsy? Epilepsy Behav 2005; 7:51–56.
72. Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol 2008; 86:129–140.
73. Jung S, Jones TD, Lugo JN, Sheerin AH, Miller JW, D’Ambrosio R,
et al. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci 2007; 27:13012–13021.
74. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH. Aberrant seizure-induced
neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006; 59:81–91.
75. Scharfmann HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20:6144–6158.
76. Kuruba R, Hattiangady B, Shetty AK. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009; 14:65–73.
77. Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling; Time course of development, progression and permanence. J Neurosci 1991; 11:2795–2803.
78. Sutula TP. Seizure-induced axonal sprouting: Assessing connections between injury, local circuits and epileptogenesis. Epilepsy Curr 2002; 2:86–91.
79. McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994; 14:3413–3425.
80. Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1:41–66.
81. Bekenstein JW, Lothman EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993; 259:97–100.
82. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H. Regulation of brain-derived neurotropic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 1992; 12:4793–4799.
83. Suzuki F, Junier MP, Guilhem D, Sorensen JC, Onteniente B. Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience 1995; 64:665–674.
84. Gomez-Pinilla F, van der Wal EA, Cotman CW. Possible coordinated geme expressions for FGF receptor, FGF-5 and FGF-2 following seizures. Exp Neurol 1995; 133:164–174.
85. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004; 548:57–68.
86. Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA. Recruitment of the Sonic hedgehog signaling cascade in eletroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 2005; 22:1570–1580.
87. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system, I: Expression and recognition. Trends Neurosci 1995; 18:83–88.
88. Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE,
et al. Kindling modulates the IL-1β system, TNF-α, TGF-β1 and neuropeptide mRNAs in specific brain regions. Mol Brain Res 2000; 75:248–258.
89. Vezzani A, Moneta D, Richichi C. Aliprandi M, Burrows SJ, Ravizza T,
et al. Functional role of inflammatory cytokines and anti-inflammatory molecules in seizures and epileptogenesis. Epilepsia 2002; 41:30–35.
Epileptogenesis and Animal Models Yow HY et al
Iran J Basic Med Sci, Vol. 16, No. 11, Nov 2013
90. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29:142–160.
91. Vezzani A, Ravizza T, Balosso S, Aronica E. Glia as a source of cytokines: Implications for neuronal excitability and survival. Epilepsia 2008; 49:24–32.
92. Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia 2012; 60:1258–1268.
93. Nguyen MD, Julien JP, Rivest S. Innate immunity: The missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002; 3:216–227.
94. Vezzani A, Granata T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia 2005; 46:1724–1743.
95. Vezzani A, Baram TZ. New roles for interleukin-1 beta in the mechanism of epilepsy. Epilepsy Curr 2007; 7:45–50.
96. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T
, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003; 23:8692–8700.
97. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005; 25:3219–3228.
98. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U,
et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004; 24:7829–7836.
99. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M,
et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J Neurosci 2009; 29:8927–8935.
100. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L,
et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:1377–1383.
101. Bursch W, Karwan A, Mayer M, Dornetshuber J, Frohwein U, Schulte-Hermann R,
et al. Cell death and autophagy: Cytokines, drugs and nutritional factors. Toxicology 2008; 254:147–157.
102. Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: A review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; 69:103–142.
103. Narkilahti S, Pitkanen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience 2005; 131:887–897.
104. Xu S, Pang Q, Liu Y, Shang W, Zhai G, Ge M. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci 2007; 14:835–840.
105. Moghadami M, Moghimi A, Jalal R, Behnam-Rosouli M, Mahdavi-Shahri S. Effects of infantile repeated hyperglycemia on neuronal density of hippocampus and pentylenetetrazol induced convulsions in male wistar rats. Iran J Basic Med Sci 2012; 15:951–957.
106. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 2005; 25:1557–1572.
107. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2:647–656.
108. Albensi BC. Potential roles for tumor necrosis factor and nuclear factor-κB in seizure activity. J Neurosci Res 2001; 66:151–154.
109. Narkilahti S, Pirttila TJ, Lukasiuk K, Tuunanen J, Pitkanen A. Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 2003; 18:1486–1496.
110. Weise J, Engelhorn T, Dorfler A, Aker S, Bahr M, Hufnagel A. Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: Constribution of delayed neuronal cell death to seizure-induced neuronal injury. Neurobiol Dis 2005; 18:582–590.
111. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of the seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol 2009; 1:97–115.
112. Gass P, Herdegen T. Neuronal expression of AP-1 proteins in excitotoxic-neurodegerative disorders and following nerve fiber lesions. Progr Neurobiol 1995; 47:257–290.
113. Kovacs KJ. c-Fos as a transcription factor: A stressful (re)view from a functional map. Neurochem Int 1998; 33:287–297.
114. Beer J, Mielke K, Zipp M, Zimmermann M, Herdegen T. Expression of c-jun, junB, c-fos, fra-1 and fra-2 mRNA in the rat brain following seizure activity and axotomy. Brain Res 1998; 794:255–266.
115. Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: Complex relationship with neuronal burst firing. J Neurosci 1993; 73:744–751.
116. Gilby KL, Armstrong JN, Currie RW, Currie RW, Robertson HA. The effects of hypoxia-ischemia on expression of c-Fos, c-Jun and Hsp 70 in the young rat hippocampus. Brain Res Mol Brain Res 1997; 48:87–96.
117. Lee MC, Rho JL, Kim MK, Woo YJ, Kim JH, Nam SC,
et al. c-JUN Expression and Apoptotic Cell Death in Kainate-Induced Temporal Lobe Epilepsy. J Korean Med Sci 2001; 16:649–656.
118. Herdegen T, Skene P, Bahr M. The c-Jun transcription factor – Biopotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20:227–231.
119. Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducible and negative autoregulation of CREM: an alternative promotor directs the expression of ICER, an early response repressor. Cell 1993; 75:875–886.
120. Borlikova G, Endo S. Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 2009; 40:73–86.
121. Mioduszewska B, Jaworski J, Kaczmarek L. Inducible cAMP early repressor (ICER) in the nervous system: a transcriptional regulator of neuronal plasticity and programmed cell death. J Neurochem 2003; 87:1313–1320.
122. Jaworski J, Mioduszewska B, Sanchez-Capelo A, Figiel I, Habas A, Gozdz A,
et al. Inducible cAMP early repressor, an endogenous antagonist of cAMP
Yow HY et al Epileptogenesis and Animal Models
Iran J Basic Med Sci, Vol. 16, No. 11, Nov 2013
responsive element-binding protein, evokes neuronal apoptosis
in vitro. J Neurosci 2003; 23:4519–4526.
123. Porter BE, Lund IV, Varodayan FP, Wallace RW, Blendy JA. The role of transcription factors cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor (ICER) in epileptogenesis. Neuroscience 2008; 152:829–836.
124. Kojima N, Borlikova G, Sakamoto T, Yamada K, Ikeda T, Itohara S,
et al. Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci 2008; 28:6459–6472.
125. Vezzani A, Schwarzer C, Lothman EW, Williamson J, Sperk G. Functional changes in somatostatin and neuropeptide Y containing neurons in the rat hippocampus in chronic models of limbic seizures. Epilepsy Res 1996; 26:267–279.
126. Schwarzer C, Williamson JM, Lothman EW, Vezzani A, Sperk G. Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience 1995; 69:831–845.
127. Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 2005; 25:285–297.
128. Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999; 22:25–30.
129. Vezzani A, Sperk G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: An endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 2004; 38:245–252.
130. Lurton D, Coussemacq M, Barrow P, Sundstrom LE, Rougier A. Widespread ectopic neuropeptide-Y immunoreactivity mossy fibers after a unilateral intrahippocampal kainic in the rat in contralateral acid injection. Neurosci Lett 1996; 213:181–184.
131. Chafetz RS, Nahm WK, Noebels JL. Aberrant expression of neuropeptide Y in hippocampal mossy fibers in the absence of local cell injury following the onset of spike-wave synchronization. Mol Brain Res 1995; 31:111–121.
132. Noe F, Frasca A, Balducci C, Carli M, Sperk G, Ferraguti F,
et al. Neuropeptide Y overexpression using recombinant adenoassociated viral vectors. Neurotherapeutics 2009; 6:300–306.
133. Noe F, Pool AH, Nissinen J, Gobbi M, Bland R, Rizzi M,
et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131:1506–1515.
134. Mazarati AM, Liu H, Soomets U, Sankar R, Shin D, Katsumori H,
et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 1998; 18:10070–10077.
135. Mazarati AM. Galanin and galanin receptors in epilepsy. Neuropeptides 2004; 38:331–343.
136. Mazarati A, Lu X. Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides 2005; 39:277–280.
137. Mazarati A, Lundstrom L, Sollenberg U, Shin D, Langel U, Sankar R. Regulation of kindling epileptogenesis by hippocampal galanin type 1 and type 2 receptors: the effects of subtype-selective
agonists and the role of G-protein-mediated signaling. J Pharmacol Exp Ther 2006; 318:700–708.
138. Kanter-Schlifke I, Toft Sorensen A, Ledri M, Kuteeva E, Hokfelt T, Kokaia M. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience 2007; 150:984–992.
139. Stables JP, Bertram E, Dudek FE, Holmes G, Mathern G, Pitkanen A,
et al. Therapy discovery for pharmacoresistant epilepsy and for disease modifying therapeutics: Summary of the NIH/NINDS/AES Models II Workshop. Epilepsia 2003; 44:1472–1478.
140. Pitkanen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismagi J,
et al. Epileptogenesis in experimental models. Epilepsia 2007; 48:13–20.
141. Stables JP, Bertnam EH, White HS, Coulter DA, Dichter MA, Jacobs MP,
et al. Models of epilepsy and epileptogenesis: Report from NIH workshop, Bethesda, Maryland. Epilepsia 2002; 43:1410–1420.
142. McNamara JO, Bonhaus DW, Shin C. The kindling model of epilepsy. In: Schwartzkroin PA, editor. Epilepsy: Models, mechanism and concepts. New York: Cambridge University Press; 1993. p. 27–47.
143. McIntyre DC, Poulter MO, Gilby K. Kindling: Some old and some new. Epilepsy Res 2002; 50:79–92.
144. Gupta YK, Veerendra Kumar MH, Srivastava AK. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 2003; 74:579–585.
145. Silva LF, Pereira P, Elisabetsky E. A neuropharmacological analysis of PTZ-induced kindling in mice. Gen Pharm 1998; 31:47–50.
146. Nissinen J, Halonen T, Koivisto E, Pitkanen A. A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 2000; 38:177–205.
147. Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 2000; 39:133–152.
148. Leite JP, Garcia-Cairasco N, Cavalheiro EA. New sights from the use of pilocarpine and kainate models. Epilepsy Res 2002; 50:93–103.
149. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE. Reccurent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: Assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 1998; 31:73–84.
150. Sloviter R. Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: The importance of the ‘latent period’ and other concepts. Epilepsia 2008; 49:85–92.
151. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe epilepsy: Pathogenesis, induced rodent models and lesions. Toxicol Pathol 2007; 35:984–998.
152. Fritschy M. A new animal model of temporal lobe epilepsy. Epileptologie 2004; 21:21–28.
Epileptogenesis and Animal Models Yow HY et al
Iran J Basic Med Sci, Vol. 16, No. 11, Nov 2013
153. Marcangelo MJ, Ovsiew F. Psychiatric aspects of epilepsy. Psychiatr Clin North Am 2007; 30:781–802.
154. Grotickle I, Hoffmann K, Loscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol 2007; 207:329–349.
155. McCord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE. Effect of age on kainate-induced seizure severity and cell death. Neuroscience 2008; 154:1143–1153.
156. Brandt C, Glien M, Potschka H, Volk H, Loscher W. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res 2003; 55:83–103.
157. Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshe SL. Resistance of immature hippocampus to morphologic and physiologic alteration following status epilepticus or kindling. Hippocampus 2001; 11:615–625.
158. Schauwecker PE. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 2011; 97:1–11.
159. Cole AJ, Koh S, Zheng Y. Are seizures harmful: What can we learn from animal models? Prog Brain Res 2002; 135:13–23.