1. Amirshahrokhi K. Acrylamide exposure aggravates the development of ulcerative colitis in mice by the activation of proinflammatory cytokines, NF-κB, iNOS and oxidative stress. Iran J Basic Med Sci 2021; 24:312-321.
2. Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide-induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272.
3. Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem 2019; 15;283:422-430.
4. Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MMA, et al. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res Int 2019; 26:35151-35162.
5. Sui X, Yang J, Zhang G, Yuan X, Li W, Long J, et al. NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 2020; 28:432:152392.
6. Elblehi SS, El Euony OI, El-Sayed YS. Apoptosis and astrogliosis perturbations and expression of regulatory inflammatory factors and neurotransmitters in acrylamide-induced neurotoxicity under ω3 fatty acids protection in rats. Neurotoxicology 2020; 76:44-57.
7. Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Role of oxidative stress, MAPKinase and apoptosis pathways in the protective effects of thymoquinone against acrylamide-induced central nervous system toxicity in rat. Neurochem Res 2020; 45:254–267.
8. Thabet NM, Moustafa EM. Protective effect of rutin against brain injury induced by acrylamide or gamma radiation: role of PI3K/AKT/GSK-3b/NRF-2 signalling pathway. Arch Physiol Biochem 2018; 124:185-193.
9. Zhao M, Lewis Wang FS, Hu X, Chen F, Chan HM. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food Chem Toxicol 2017; 106(Pt A):25-35.
10. Hamdy N, El-Demerdash E. New therapeutic aspect for carvedilol: antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage. Toxicol Appl Pharmacol 2012; 15;261:292-299.
11. Amirshahrokhi K, Khalili AR. Carvedilol attenuates paraquat-induced lung injury by inhibition of proinflammatory cytokines, chemokine MCP-1, NF-κB activation and oxidative stress mediators. Cytokine 2016; 88:144-153.
12. Amirshahrokhi K, Zohouri A. Carvedilol prevents pancreatic β-cell damage and the development of type 1 diabetes in mice by the inhibition of proinflammatory cytokines, NF-κB, COX-2, iNOS and oxidative stress. Cytokine 202; 138:155394.
13. Wang J, Ono K, Dickstein DL, Arrieta-Cruz I, Zhao W, Qian X, et al. Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease. Neurobiol Aging 2011; 32:2321.
14. Naidu PS, Singh A, Kulkarni SK. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible anti-oxidant mechanisms. Br J Pharmacol 2002; 136:193-200.
15. Areti A, Komirishetty P, Kumar A. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicol Appl Pharmacol 2017; 322:97-103.
16. Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, et al. The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab 2000; 20:1197-1204.
17. Yue TL, Lysko PG, Barone FC, Gu JL, Ruffolo RR Jr, Feuerstein GZ. Carvedilol, a new antihypertensive drug with unique antioxidant activity: potential role in cerebroprotection. Ann N Y Acad Sci 1994; 738:230-242.
18. Tasset I, Espínola C, Medina FJ, Feijóo M, Ruiz C, Moreno E, et al. Neuroprotective effect of carvedilol and melatonin on 3-nitropropionic acid-induced neurotoxicity in neuroblastoma. J Physiol Biochem 2009; 65:291-296.
19. Gao X, Wu B, Fu Z, Zhang Z, Xu G. Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells. Eur J Pharmacol. 2017; 814:144-150.
20. LoPachin RM. Acrylamide Neurotoxicity: Neurological, morhological and molecular endpoints in animal models. Adv Exp Med Biol 2005; 561:21-37.
21. Zhang L, Gavin T, Barber DS, LoPachin RM. Role of the Nrf2-ARE pathway in acrylamide neurotoxicity. Toxicol Lett 2011; 205:1– 7.
22. Amirshahrokhi K. Thalidomide reduces glycerol-induced acute kidney injury by inhibition of NF-κB, NLRP3 inflammasome, COX-2 and inflammatory cytokines. Cytokine 2021; 144:155574.
23. Amirshahrokhi K, Khalili AR. Methylsulfonylmethane is effective against gastric mucosal injury. Eur J Pharmacol 2017; 811:240-248.
24. Yao X, Yan L, Yao L, Guan W, Zeng F, Cao F, et al. Acrylamide exposure impairs blood-cerebrospinal fluid barrier function. Neural Regen Res 2014; 9:555-560.
25. Triningsih D, Yang J-H, Sim KH, Lee C, Lee YJ. Acrylamide and its metabolite induce neurotoxicity via modulation of protein kinase C and AMP-activated protein kinase pathways. Toxicol in Vitro 2021;72:105105.
26. Farouk SM, Gad FA, Almeer R, Abdel-Daim MM, Emam MA. Exploring the possible neuroprotective and anti-oxidant potency of lycopene against acrylamide-induced neurotoxicity in rats’ brain. Biomed and Pharmacother 2021; 138:111458.
27. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, et al. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol 2018; 118:745-752.
28. Song G, Liu Z, Liu Q, Liu X. Lipoic acid prevents acrylamide-induced neurotoxicity in CD-1 mice and BV2 microglial cells via maintaining redox homeostasis. J Funct Foods 2017; 35:363–375.
29. Kabel AM, Salama SA, Alghorabi AA, Estfanous RS. Amelioration of cyclosporine-induced testicular toxicity by carvedilol and/or alpha-lipoic acid: Role of TGF-β1, the proinflammatory cytokines, Nrf2/HO-1 pathway and apoptosis. Clin Exp Pharmacol Physiol 2020:47:1169-1181.
30. Refaie MMM, El-Hussieny M, Bayoumi AMA, Shehata S. Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environ Toxicol Pharmacol 2019; 70:103198.
31. Ouyang Y, Chen Z, Tan M, Liu A, Chen M, Liu J, et al. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells. Biochem Biophys Res Commun 2013; 441; 917-922.
32. Wang L, Wang R, Jin M, Huang Y, Liu A, Qin J, et al. Carvedilol attenuates 6-hydroxydopamine-induced cell death in PC12 cells: Involvement of Akt and Nrf2/ARE pathways. Neurochem Res 2014; 39:1733-1740.
33. Santhanasabapathy R, Vasudevan S, Anupriya K, Pabitha R, Sudhandiran G. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence. Neuroscience 2015; 308:212-227.
34. Sharma C, Kang SC. Garcinol pacifies acrylamide induced cognitive impairments, neuroinflammation and neuronal apoptosis by modulating GSK signaling and activation of pCREB by regulating cathepsin B in the brain of zebrafish larvae. Food Chem Toxicol 2020; 138:111246.
35. Chen S, Chen H, Du Q, Shen J. Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds. Front Physiol 2020; 11:433.
36. Maki RA, Holzer M, Motamedchaboki K, Malle E, Masliah E, et al. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson’s disease and in the hMPO-α-synuclein-A53T mouse model, correlating with increased nitration and aggregation of α-synuclein and exacerbation of motor impairment. Free Radic Biol Med 2019; 141:115-140.
37. Alturfan AA, Tozan-Beceren A, Sehirli AO, Demiralp E, Sener G, Omurtag GZ. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep 2012; 39:4589-4596.
38. Zhang L, Wang E, Chen F, Yan H, Yuan Y. Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food and Funct 2013; 4;1229-1236.
39. Pan X, Wu X, Yan D, Peng C, Rao C, Yan H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett 2018; 288:55-64.
40. Yan D, Pan X, Yao J, Wang D, Wu X, Chen X, et al. MAPKs and NF-κB-mediated acrylamide-induced neuropathy in rat striatum and human neuroblastoma cells SY5Y. J Cell Biochem 2019; 120:3898-3910.
41. Clemens JA. Cerebral ischemia: gene activation, neuronal injury, and the protective role of anti-oxidants. Free Radic Biol Med 2000; 28:1526-1531.
42. Kucukler S, Caglayan C, Darendelioğlu E, Kandemir FM. Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-κB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways. Life Sci 2020; 261,118301.
43. Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2014; 9:133-141.
44. Chen JH, Yang CH, Wang YS, Lee JG, Cheng CH, Chou CC. Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem Toxicol 2013; 51:446-452
45. Kianfar M, Nezami A, Mehri S, Hosseinzadeh H, Hayes AW, Karimi G. The protective effect of fasudil against acrylamide-induced cytotoxicity in PC12 cells. Drug Chem Toxicol 2018; 43:595-601.
46. Li SX, Cui N, Zhang CL, Zhao XL, Yu SF, Xie KQ. Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 2006; 217;46-53
47. Pan X, Yan D, Wang D, Wu X, Zhao W, Lu Q, et al. Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 anti-oxidant and MAPK signaling pathways in PC12 cells. Mol Neurobiol 2017; 54:4781-4794.
48. Liu J, Wang M. Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones 2018; 23:695-702.
49. Chen YL, Chung SY, Chai HT, Chen CH, Liu CF, Chen YL, et al. Early administration of carvedilol protected against doxorubicin-induced cardiomyopathy. J Pharmacol Exp Ther 2015; 355:516-527.
50. Dandona P, Ghanim H, Brooks DP. Anti-oxidant activity of carvedilol in cardiovascular disease. J Hypertens. 2007; 25:731-741.
51. Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2014; 223:69-79.