Molecular typing of clinical and environmental isolates of Klebsiella pneumoniae producing ESBLs by PFGE

Document Type : Original Article


1 Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran

2 Infectious Diseases Research Center, Kashan University of Medical Science, Kashan, Iran

3 Department of Vital Statistics and Epidemiology, School of Health, Kashan University of Medical Sciences, Kashan, Iran

4 Department of Biostatistics, Health Faculty, Kashan University of Medical Sciences, Kashan, Iran

5 Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran


Objective(s): Klebsiella pneumoniae is the common cause of pneumonia in hospitalized patients, particularly in intensive care units (ICU). The infection can transfer by medical equipment such as mechanical ventilators. This study aimed to investigate the molecular typing of the extended-spectrum beta-lactamase-producing K. pneumoniae isolates recovered from Beheshti Hospital, Kashan, Iran. 
Materials and Methods: K. pneumoniae isolates producing ESBLs have been collected from the samples obtained from Shahid Beheshti hospital, Kashan, Iran. Antimicrobial susceptibility was determined using the Kirby Bauer disk diffusion method. The presence of ESBLs was evaluated using CLSI for ESBL screening by the double-disk diffusion method. Molecular typing was conducted by pulsed-field gel electrophoresis (PFGE).  In total, 89 K. pneumoniae isolates were recovered, of which 47.1% were ESBL producers.
Results: Results showed that all of the clinical and environmental isolates were resistant to ceftriaxone, meropenem, cefazolin, cefotaxime, cephalothin, and piperacillin-tazobactam. All isolates were grouped under four clusters (A-D). The major cluster was related to the C cluster with 22 isolates (19 clinical and 3 environmental). Seventy-two percent of isolates were from the ICU ward. There was no correlation between antibiotic resistance patterns and PFGE clusters (P=0.2).
Conclusion: We observed a common molecular signature among both clinical and environmental K. pneumoniae isolates, indicating a similar genotype and likely a common origin for ESBL producer isolates found in different hospital wards. Therefore, hospitals need to implement an effective infection control system to decrease the spreading of ESBL strains within the hospitals and subsequently the transmission of the infection to patients.


1.    Gharavi MJ, Zarei J, Roshani-Asl P, Yazdanyar Z, Sharif M, Rashidi N. Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci Rep 2021;11:1-11.
2.    Guo Y, Zhou H, Qin L, Pang Z, Qin T, Ren H, et al. Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One 2016;11:e0153561.
3.    Eida M, Nasser M, El-Maraghy N, Azab K. Pattern of hospital-acquired pneumonia in intensive care unit of Suez Canal University hospital. Egypt J Chest Dis Tuberc 2015;64:625-631.
4.    Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 2020;19:1-9. 
5.    Van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin 2016;30:377-390.
6.    Cepas V, Soto SM. Relationship between virulence and resistance among gram-negative bacteria. Antibiotics 2020;9:719.
7.    Karami P, Bazmamoun H, Sedighi I, Nejad ASM, Aslani MM, Alikhani MY. Antibacterial resistance patterns of extended spectrum b-lactamaseproducing enteropathogenic Escherichia coli strains isolated from children. Arab J Gastroenterol 2017;16;23-32.
8.    Arabestani MR, Karami M, Alikhani MY. Antimicrobial resistance in microorganisms. Avicenna J Clin Microbiol Infect 2014;1:114-125.
9.    Chemaly RF, Simmons S, Dale Jr C, Ghantoji SS, Rodriguez M, Gubb J, et al. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis 2014;2:79-90.
10.    Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.
11.    Christian NA, Roye-Green K, Smikle M. Molecular epidemiology of multidrug resistant extended spectrum beta-lactamase producing Klebsiella pneumoniae at a Jamaican hospital, 2000-2004. BMC Microbiol 2010;10:1-8.
12.    Sękowska A, Gospodarek E, Kamińska D. Antimicrobial susceptibility and genetic similarity of ESBL-positive Klebsiella pneumoniae strains. Arch Med Sci 2012;8:993.
13.    Oliveira ACd, Damasceno QS. Surfaces of the hospital environment as possible deposits of resistant bacteria: a review. Rev Esc Enferm USP 2010;44:1118-23. 
14.    Ripabelli G, Sammarco M, Flocco R, Scutellà M, Recchia L, Grasso G, et al. Klebsiella pneumoniae isolated from intensive care unit patients with respiratory tract infections: characterization by pulsed-field gel electrophoresis, antimicrobial resistance and pcrs for carbapenemase genes detection. J Respir Med Lung Dis 2017;2:1008.
15.    Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol Rev 2009;33:892-916.
16.    Goering RV. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 2010;10:866-875.
17.    Lanini S, D’Arezzo S, Puro V, Martini L, Imperi F, Piselli P, et al. Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PloS one 2011;6:e17064.
18.    Hashemizadeh Z, Hosseinzadeh Z, Azimzadeh N, Motamedifar M. Dissemination pattern of multidrug resistant carbapenemase producing Klebsiella pneumoniae isolates using pulsed-field gel electrophoresis in southwestern Iran. Infect Drug Resist 2020;13:921.
19.    Ripabelli G, Tamburro M, Guerrizio G, Fanelli I, Flocco R, Scutellà M, et al. Tracking multidrug-resistant Klebsiella pneumoniae from an Italian hospital: molecular epidemiology and surveillance by PFGE, RAPD and PCR-based resistance genes prevalence. Curr Microbiol 2018;75:977-987.
20.    Khaledi A, Khademi F, Esmaeili D, Esmaeili S-A, Rostami H. The role of HPaA protein as candidate vaccine against Helicobacter pylori. Der Pharma Chemica 2016;8:235-237.
21.    Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Clin Lab Stand Inst Wayne 2017;18:45-67.
22.    Kaufmann ME. Pulsed-field gel electrophoresis.  Mol Bacteriol 1998;17: 33-50.
23.    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233.
24.    Langarizadeh N, Ahangarzadeh RM, Aghazadeh M, Hasani A. Prevalence of multi-drug resistant (MDR) Klebsiella pneumoniae among children and adults with urinary tract infection referred to tabriz teaching hospitals.  J Biol Sci 2011;4:1-9.
25.    Japoni-Nejad A, Ghaznavi-Rad E, Van Belkum A. Characterization of plasmid-mediated AmpC and carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res Perspect 2014;5:333-338.
26.    Shahcheraghi F, Aslani MM, Mahmoudi H, Karimitabar Z, Solgi H, Bahador A, et al. Molecular study of carbapenemase genes in clinical isolates of Enterobacteriaceae resistant to carbapenems and determining their clonal relationship using pulsed-field gel electrophoresis. J Med Microbiol 2017;66:570-576.
27.    Gladstone R, Jefferies J, Faust S, Clarke S. Continued control of pneumococcal disease in the UK–the impact of vaccination. J Med Microbiol 2011;60:1-8.
28.    Zheng R, Zhang Q, Guo Y, Feng Y, Liu L, Zhang A, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China. Ann Clin Microbiol Antimicrob 2016;15:1-8.
29.    Elahi A, Akya A, Chegene Lorestani R, Ghadiri K, Baakhshii S. Molecular typing of Klebsiella pneumoniae isolated from medical centers in Kermanshah using pulse field gel electrophoresis. Arch Pediatr Infect Dis 2019;7:2-8.
30.    Tijet N, Sheth PM, Lastovetska O, Chung C, Patel SN, Melano RG. Molecular characterization of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae in Ontario, Canada, 2008-2011. PLoS One 2014;9:e116421.
31.    Dedeic-Ljubovic A, Hukic M, Pfeifer Y, Witte W, Padilla E, López-Ramis I, et al. Emergence of CTX-M-15 extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in Bosnia and Herzegovina. Clin Microbiol Infect 2010;16:152-156.
32.    Mohamed ER, Aly SA, Halby HM, Ahmed SH, Zakaria AM, El-Asheer OM. Epidemiological typing of multidrug-resistant Klebsiella pneumoniae, which causes paediatric ventilator-associated pneumonia in Egypt. J Med Microbiol 2017;66:628-634.
33.    Najar Peerayeh S, Derakhshan S, Fallah F, Bakhshi B. Strain typing and molecular characterization of CTX-M-1 group ESBL in clinical Klebsiella pneumoniae isolated from children. Arch Pediatr Infect Dis 2017;5:24-31.
34.    Ashayeri-Panah M, Feizabadi MM, Eftekhar F. Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishapur J Microbiol 2014;7:76-83.
35.    Feizabadi MM, Mahamadi-Yeganeh S, Mirsalehian A, Mirafshar S-M, Mahboobi M, Nili F, et al. Genetic characterization of ESBL producing strains of Klebsiella pneumoniae from Tehran hospitals. J Infect Dev Ctries 2010;4:609-615.
36.    Ashayeri-Panah M, Eftekhar F, Ghamsari MM, Parvin M, Feizabadi MM. Genetic profiling of Klebsiella pneumoniae: comparison of pulsed field gel electrophoresis and random amplified polymorphic DNA. Braz J Microbiol 2013;44:823-828.
37.    Mshana SE, Hain T, Domann E, Lyamuya EF, Chakraborty T, Imirzalioglu C. Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect Dis 2013;13:1-8.