Thiazole derivative based topical nanoemulgel for inhibition of bacterial virulence in surface infections

Document Type : Original Article


1 Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India

2 I.T.S College of Pharmacy, Murad Nagar, Ghaziabad, U.P. (201206), India

3 Regional Centre for Biotechnology, Department of Biotechnology (DBT), Faridabad, Haryana, 121001, India. 411040


Objective(s): Antimicrobial resistance emerged as a global challenge owing to limited therapeutic options to control infections. Pseudomonas aeruginosa, an MDR pathogen already developed resistance against many conventional antibiotics. An “anti-virulence strategy” that targets bacterial virulence rather than growth proves effective against drug-resistant pathogens. 
Materials and Methods: Here, we used a structure-based drug design approach to identify lead molecules using the LasR receptor protein of P. aeruginosa as a target responsible for virulence production in this bacterium. From the identified hits, we developed lead-based nanoformulation and investigated its effectiveness for treating the P. aeruginosa associated surface-infection in-vivo. First, TC-based nanoemulsions were fabricated by high-pressure homogenization and evaluated for various in vitro parameters. The optimized nanoemulsions were thereby utilized to prepare NEG.
Results: The nanoemulsion (F3) exhibited low droplet size (51.04±1.88 nm), PDI (0.065±1.14), and negative zeta potential (-33.65±0.82 mV). In animals, topical application of NEG-3 demonstrated significant improvement on skin permeability (459±10.17 µg), drug influx (18.99±0.76 μg/cm2 hr), and repressed the CFU of P. aeruginosa induced-surface infection (P≤0.001). The histology of rat skin demonstrated a significant effect for groups treated with TC-based NEGs as compared with a negative control group, whereas no significant effect was seen on rat liver indicating low systemic exposure to the drug. Also, NEG3 showed no significant changes under different stability conditions after 3 months.
Conclusion: TC-based NEGs open up the possibility of a more effective way to combat serious surface infections caused by P. aeruginosa.


1. Kon K, Rai M. Antibiotic resistance mechanisms and new antimicrobial approaches. 1st ed. Academic Press Elsevier Inc;USA. 2016. p. 121.
2.    Gomez MI, Prince A. Opportunistic infections in lung disease: pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 2007; 7: 244-251. 
3.    Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33:41-46. 
4.    Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, et al. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J Med Chem 2016; 59:5929-5969. 
5.    Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 3:541-548.
6.    Kariminik A, Majid BS, Kheirkhah B. Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article. Immunol Lett 2017; 190:1-6. 
7.    Bhardwaj S, Bhatia S, Singh S, Franco Jr F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. Iran J Basic Med Sci 2021; 24:699–719. 
8.    Chourasiya SS, Kathuria D, Singh S, Sonawane VC, Chakrabortia  AK, Bharatam PV. Design, synthesis and biological evaluation of novel unsymmetrical azines as quorum sensing inhibitors. RSC Adv 2015; 25:80027-80038. 
9.    Bhardwaj S, Tiwari A. Nanoemulgel: A promising nanolipoidal-emulsion based drug delivery system in managing psoriasis. Dhaka Univ J Pharm Sci 2021; 20:235-246.
10.    Tyagi A, Bhardwaj S, Kumar Gaur P, Singh M. A review on topical nanocarrier system of nsaids in the management of soft tissue injury. Int J All Res Educ Sci Methods 2021; 9:656-665.
11.    Tiwari A, Bhardwaj S, Kumar Gaur P, Singh AP, Barman M. Potential advancement of nanocarriers in topical drug delivery: A mini review. Lett Appl NanobioSci 2020; 9:968-974.
12.    Ali SS, Bhardwaj S, Khan NA, Imam SS, Kala C. Phytoconstituents loaded nanomedicines for arthritis management. In Inflammatory biomarkers as Targeted Herbal drug discovery tool: A Pharmacological Approach to Nanomedicines published by Apple Academic Press and Co-published by CRC Press, Taylor & Francis Group, USA, 2021.
13.    Bhardwaj S, Bhatia S. Development and characterization of niosomal gel system using lallementia royaleana benth. mucilage for the treatment of  rheumatoid arthritis. Iran J Pharm Res 2020; 19:465–482.
14.    Bhardwaj S, Gaur PK, Tiwari A. Development of topical nanoemulgel using combined therapy for treating psoriasis. Assay Drug Dev Technol 2022; 20:42-54.
15.    Basera K, Bhatt G, Kothiyal P, Gupta P. Nanoemulgel: A novel formulation approach for topical deliverey of hydrophobic drugs. World J Pharm Pharm Sci 2015; 4:1871-1886.
16.    Tamjidi F, Nasirpour A, Varshosaz J, Shahedi M. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19:29-43.
17.    Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS Pharm Sci Tech 2007; 8:104-105.
18.    Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS Pharm Sci Tech 2007; 8:1-6.
19.    Ahmad J, Kohli K, Mir SR, Amin S. Formulation of self-nanoemulsifying drug delivery system for telmisartan with improved dissolution and oral bioavailability. J Dispers Sci Technol 2011; 32:958-968.
20.    Ahmad J, Mir SR, Kohli K, Amin S. Effect of oil and co-surfactant on the formation of solutol hs 15 based colloidal drug carrier by box-behnken statistical design. Colloids Surf Physicochem Eng Asp 2014; 453:68-77.
21.    Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulgel for improved topical delivery of retinyl palmitate: formulation design and stability evaluation. Nanomaterials (Basel) 2020; 10:848-866.
22.    Bouchemal K, S Briançon, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 2004; 280:241-251.
23.    Amin S, Sarfenejad A, Ahmad J, Kohli K, Mir SR. Nanovesicular transfersomes for enhanced systemic delivery of telmisartan. Adv Sci Eng Med 2013; 5:299-308.
24.    Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 2004; 108:303-318.
25.    Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66:227-243.
26.    Nava G, Pinon E, Mendoza L, Mendoza N, Quintanar D, Ganem A. Formulation and in vitro, ex vivo and in vitro evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine. Pharmaceutics 2011; 3:954-970.
27.    Bhattacharya S, Prajapati BG. Formulation and optimization of celecoxib nanoemulgel. Asian J Pharm Clin Res 2017; 10:353-365.
28.    Verma S, Singh AK, Mukerjee A. Formulation & evaluation of ketoconazole nanoemulgel. World J Pharm Pharm Sci 2016; 5:899-911.
29.    Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 2013; 13:114-122.
30.    Ahmad J, Gautam A, Komath S, Bano M, Garg A, Jain K. Topical nano-emulgel for skin disorders: Formulation approach and characterization. Recent Pat Antiinfect Drug Discov 2019; 14:36-48.
31.    Karade PG, Rohit RS, Chougale DD, Bhise SB. Formulation and evaluation of celecoxib gel. J Drug Deliv Ther 2012; 2:132-135.
32.    Okyar A, Yildiz A, Aksu B, Çınar C, Ozsoy Y, Baktır G. Effect of terpenes as penetration enhancers on percutaneous penetration of tiaprofenic acid through pig skin. Acta Pharm Sci 2008; 50:247-256.
33.    Plessis J, Egbaria K, Weiner N. Influence of formulation factors on the deposition of liposomal components into the different strata of the skin. J Soc Cosmet Chem 1992; 43:93-100. 
34.    Jacobsen F, Fisahn C, Sorkin M, Thiele I, Hirsch T, Stricker I, et al. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55:2325-2334. 
35.    Steinstraesser L, Tack BF, Waring AJ, Hong T, Boo LM, Fan MH, et al. Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob Agents Chemother 2002; 46:1837-1844.
36.    Sintov A, Zeevi A, Uzan R, Nyska A. Influence of pharmaceutical gel vehicles containing oleic acid/sodium oleate combinations on hairless mouse skin, a histological evaluation. Eur J Pharm Biopharm 1999; 47:299-303.
37.    Iradhati AH, Jufri M. Formulation and physical stability test of griseofulvin microemulsion gel. Int J Appl Pharm 2017; 9:23-26.
38.    Akhter S, Anwar M, Siddiqui MA, Ahmad I, Ahmad J, Ahmad MZ, et al. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: formulation development, in vitro and in vivo studies. Colloids Surf B Biointerfaces 2016; 148:19-29. 
39.    Su R, Yang L, Wang Y, Yu S, Guo Y, Deng J et al. Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB. Int J  Nanomed 2017; 12:5203-5221. 
40.    Sinko PJ, Singh Y. Martin’s Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences; Walter Kluer: Alphen aan den Rijn, South Holland, The Netherlands. 2011. p. 472-477.
41.    Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10:57-74.
42.    Kadu PJ, Kushare SS, Thacker DD, Gattani, SG. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm Dev Technol 2011; 16:65-74.
43.    Eskandar NG, Simovic S, Prestidge CA. Chemical stability and phase distribution of all-trans-retinol in nanoparticle-coated emulsions. Int J Pharm 2009; 376:186-194.
44.    Dantas MG, Reis SA, Damasceno CM, Rolim LA, Rolim-Neto PJ, Carvalho FO, Quintans-Junior LJ, Almeida JR. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci World J 2016; 2016:7394685.
45.    Chen MX, Alexander KS, Baki G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J Pharm (Cairo) 2016; 2016:5754349.
46.    Kienzler JL, Gold M, Nollevaux F. Systemic bioavailability of topical diclofenac sodium gel 1% versus oral diclofenac sodium in healthy volunteers. J Clin Pharmacol 2010; 50:50-61. 
47.    LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Diclofenac. [Updated 2017 Dec 13]. Available from:
48.    Dizaj SM. Preparation and study of vitamin A palmitate microemulsion drug delivery system and investigation of co-surfactant effect. J Nanostruct Chem 2013; 3:24-42.
49.    Liu, W., Sun, D., Li, C., Liu, Q., & Xu, J. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J Colloid Interface Sci 2006; 303:557-563.
50.    Campos FF, Calpena Campmany AC, Delgado GR, Serrano OL, Naveros BC. Development and characterization of a novel nystatin-loaded nanoemulsion for the buccal treatment of candidosis: Ultrastructural effects and release studies. J Pharm Sci 2012; 101:3739-3752.