Immunopotentiating properties of chimeric OprF-OprI-PopB protein against Pseudomonas aeruginosa PAO1 in the infected burned rat model

Document Type : Original Article


Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran


Objective(s): Pseudomonas aeruginosa, as an opportunistic pathogen, is known to cause nosocomial infections among patients suffering from burn injuries and also cystic fibrosis patients. The objective of our research was to develop a novel vaccine against P. aeruginosa. 
Materials and Methods: A recombinant P. aeruginosa subunit vaccine based on the outer membrane proteins, including the OprF-OprI region and its major protein in the type III secretion system, PopB (called FIB protein) was formulated. To induce a robust immune response, our preferred regions were conjugated to a carrier protein, GMCSF (Granulocyte-macrophage colony-stimulating factor). FIB protein’s immunogenicity with and without adjuvant was evaluated in vaccinated rats and also burned rat models, which were subcutaneously challenged by the PAO1 strain of P. aeruginosa.
Results: Antibody levels were increased in sera of rats in this study. Assessment of the resident memory CD4+ T cells in splenocytes from vaccinated rats demonstrated that the FIB conjugated with GMCSF could cause higher responses in comparison with other groups. Moreover, immunization with the FIB plus adjuvant protein could improve interferon-gamma (IFN-γ) production, interleukin 17A (IL-17A), and IL-4, contributing to elicit humoral and cellular immune responses and decreased post-infection bacterial loads after PA challenge, pathology, and inflammatory cell infiltration. 
Conclusion: These observations demonstrated that FIB conjugated with GMCSF can be a putative vaccine candidate against P. aeruginosa in burnt rat models.


1. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7:1-18. 
2. Diggle SP and Whiteley M. Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology 2020; 166:30–33. 
3. Merakou C, Schaefers MM, and Priebe GP. Progress toward the elusive Pseudomonas aeruginosa vaccine. Surg Infect 2018; 19:757–768. 
4. Baker SM, McLachlan JB, Morici LA. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum Vaccin Immunother 2020; 16:412-8. 
5. Fakoor MH, Gargari SL, Owlia P, Sabokbar A. Protective efficacy of the OprF/OprI/PcrV recombinant chimeric protein against Pseudomonas aeruginosa in the burned BALB/c mouse model. Infect Drug Resist 2020; 13:1651. 
6. Mayeux G, Gayet L, Liguori L, Odier M, Martin DK, Cortès S, et al. Cell-free expression of the outer membrane protein OprF of Pseudomonas aeruginosa for vaccine purposes. Life Sci Alliance 2021; 4:1-16. 
7. Tang Y, Romano FB, Breña M, Heuck AP. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 2018; 293:8982–8993. 
8. Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, et al. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186:420–427. 
9. Gonzaga ZJ, Merakou C, DiGiandomenico A, Priebe GP, Rehm BH. A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines 2021; 9:3-20. 
10. Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer vaccines, adjuvants, and delivery systems. Front Immunol 2021; 12:1-21. 
11. Merakou C, Schaefers MM, Priebe GP. Progress toward the elusive Pseudomonas aeruginosa vaccine. Surg Infect 2018; 19:757-68. 
12. Meynet E, Laurin D, Lenormand JL, Camara B, Toussaint B, Le Gouëllec A. Killed but metabolically active Pseudomonas aeruginosa-based vaccine induces protective humoral-and cell-mediated immunity against Pseudomonas aeruginosa pulmonary infections. Vaccine. 2018; 36:1893-900. 
13. Sievers F, Higgins DG. Clustal Omega. Curr Protoc Bioinforma 2014; 48:3-13. 
14. Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PWR, Kayastha AM, et al. MFPPI – Multi FASTA ProtParam Interface. Bioinformation 2016; 12:74–77. 
15. Beg AZ, Farhat N, Khan AU. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. Infect Genet Evol 2021; 93:104982. 
16. Cao B, Porollo A, Adamczak R, Jarrell M, Meller J. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics 2006; 22:303-9. 
17. Drozdetskiy A, Cole C, Procter J, and Barton GJ. JPred4: A protein secondary structure prediction server. Nucleic Acids Res 2015; 43:389–394. 
18. Singh H and Raghava GPS. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2002; 17:1236–1237. 
19. Heo L, Park H, and Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013; 41:384–388. 
20. Uchôa HB, Jorge GE, Da Silveira NJ, Camera Jr JC, Canduri F, De Azevedo Jr WF. Parmodel: a web server for automated comparative modeling of proteins. Biochem Biophys Res Commun 2004; 325:1481-1486. 
21. Mooers BHM. Simplifying and enhancing the use of PyMOL with horizontal scripts. Protein Sci 2016; 1873–1882. 
22. Jespersen MC, Peters B, Nielsen M, and Marcatili P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 2017; 45:24–29. 
23. Behbahani MR, Keshavarzi A, Pirbonyeh N, Javanmardi F, Khoob F, Emami A. Plasmid-related β-lactamase genes in Pseudomonas aeruginosa isolates: a molecular study in burn patients. J Med Microbiol 2019; 68:1740-1746. 
24. Sereena MC, Sebastian D. Cloning, expression and characterization of the anticancer protein azurin from an indigenous strain Pseudomonas aeruginosa SSj. nt J Pept Res Ther 2020; 26:1223-1230. 
25. Aghababa H, Mohabati Mobarez A, Khoramabadi N, Behmanesh M, Mahdavi M, Tebianian M, et al. A comparative approach to strategies for cloning, expression, and purification of Mycobacterium tuberculosis mycolyl transferase 85B and evaluation of immune responses in BALB/c mice. Mol Biotechnol 2014; 56:487–497. 
26. Seyedjavadi SS, Razzaghi-Abyaneh M, Nasiri MJ, Hashemi A, Goudarzi H, Haghighi M, et al. Isolation and chemical characterization of an alpha-helical peptide, dendrocin-ZM1, derived from zataria multiflora boiss with potent antibacterial activity. Probiotics Antimicrob Proteins 2022; 20:1-11. 
27. González‐Vázquez MC, Rocha‐Gracia RD, Carabarín‐Lima A, Bello‐López E, Huerta‐Romano F, Martínez‐Laguna Y, et al. Location of OprD porin in Pseudomonas aeruginosa clinical isolates. Apmis 2021; 129:213-24. 
28. Fakoor MH, Gargari SL, Owlia P, Sabokbar A. Protective efficacy of the OprF/OprI/PcrV recombinant chimeric protein against Pseudomonas aeruginosa in the burned BALB/c mouse model. Infect Drug Resist 2020;13:1651–1661. 
29. Sen-Kilic E, Blackwood CB, Boehm DT, Witt WT, Malkowski AC, Bevere JR, et al. Intranasal peptide-based fpva-klh conjugate vaccine protects mice from Pseudomonas aeruginosa acute murine pneumonia. Front Immunol 2019; 10:1-17. 
30. Paschall AV, Middleton DR, Avci FY. Opsonophagocytic killing assay to assess immunological responses against bacterial pathogens. J Vis Exp 2019; 5:e59400. 
31. Zuo QF, Yang LY, Feng Q, Lu DS, Dong YD, Cai CZ, et al. Evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic MRSA infection. PLoS One 2013; 8:1-10. 
32. Wang Y, Cheng X, Wan C, Wei J, Gao C, Zhang Y, Zeng H, Peng L, Luo P, Lu D, Zou Q. Development of a chimeric vaccine against Pseudomonas aeruginosa based on the Th17-stimulating epitopes of PcrV and AmpC. Front Immunol 2021; 11:1-12 
33. Anantharajah A, Mingeot-Leclercq M-P, and Bambeke F Van. Targeting the type three secretion system in Pseudomonas aeruginosa. Trends Pharmacol Sci 2016; 37:734–749. 
34. Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, et al. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186:420–427. 
35. Priebe GP and Goldberg JB. Vaccines for Pseudomonas aeruginosa: A long and winding road. Expert Rev Vaccines 2015; 13:507–519. 
36. Norouzi F, Behrouz B, Ranjbar M, Mousavi Gargari SL. Immunotherapy with IgY antibodies toward outer membrane protein F protects burned mice against Pseudomonas aeruginosa infection. J Immunol Res 2020; 2020:1-8. 
37. Moussouni M, Berry L, Sipka T, Nguyen-Chi M, Blanc-Potard AB. Pseudomonas aeruginosa OprF plays a role in resistance to macrophage clearance during acute infection. Sci Rep 2021; 11:1-11. 
38. Chen X, Zaro JL, Shen WC. Fusion protein linkers: Property, design and functionality. Adv Drug Deliv Rev 2013; 65:1357–1369. 
39. Hassan R, El-Naggar W, Abd El-Aziz AM, Shaaban M, Kenawy HI, Ali YM. Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa. J Microbiol Immunol Infect 2018; 51:312–320. 
40. Schaefers MM, Duan B, Mizrahi B, Lu R, Reznor G, Kohane DS, et al. PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine 2018; 36:6926–6932. 
41. Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent advances in immunotherapies against infectious diseases. Immunother Adv 2021; 1:1-16. 
42. Laghaei P, Hashemi FB, Irajian G, Korpi F, Amirmozafari N, and Behrouz B. Immunogenicity and protective efficacy of Pseudomonas aeruginosa type a and b flagellin vaccines in a burned mouse model. Mol Immunol 2016; 74:71–81. 
43. Sabzehali F, Rahimi H, Goudarzi H, Goudarzi M, Izad MH, Chirani AS, Jalali SA, Faghihloo E. Functional engineering of OprF-OprI-PopB as a chimeric immunogen and its cross-protective evaluation with GM-CSF against Pseudomonas aeruginosa: A comprehensive immunoinformatics evaluation. Inform Med Unlocked 2021; 25:1-16. 
44. Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 2010; 125: 222-230. 
45. Wan C, Zhang J, Zhao L, Cheng X, Gao C, Wang Y, et al. Rational Design of a Chimeric Derivative of PcrV as a Subunit Vaccine Against Pseudomonas aeruginosa. Front Immunol 2019; 10:1-12. 
46. Yang F, Gu J, Yang L, Gao C, Jing H, Wang Y, et al. Protective efficacy of the trivalent Pseudomonas aeruginosa Vaccine candidate pcrv-opri-hcp1 in murine pneumonia and burn models. Sci Rep 2017; 7:1-13. 
47. Lim JY, Choi BH, Lee S, Jang YH, Choi JS, and Kim YM. Regulation of wound healing by granulocyte-macrophage colony-stimulating factor after vocal fold injury. PLoS One 2013; 8:1-12.