Saffron nephroprotective effects against medications and toxins: A review of preclinical data

Document Type : Review Article

Authors

Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Toxin and drug-induced nephrotoxicity (DIN) account for about 25% of all acute kidney injury cases and are associated with morbidity and increased utilization of healthcare services. No approved preventive compound is available for DIN. Saffron (Crocus sativus) has important biological properties like antioxidant and anti-inflammatory effects. The protective effects of saffron and its main constituents in different tissues including the brain, heart, liver, kidney, and lung have been confirmed against some toxic materials or drugs in animal studies. This review covers all aspects of saffron’s preventive and therapeutic effects against toxins and DIN including proposed mechanism of action, dosing schedule, and effects on renal biomarkers and histological changes. PubMed, Embase, Scopus, and Web of Science databases were searched by these search terms: “saffron” OR “Crocus sativus” OR “crocetin” OR “crocin “OR “safranal” AND “Drug induced nephrotoxicity” OR “Renal Injury” OR “Kidney Injury” OR “Nephrotoxicity”. All 25 relevant in vitro and in vivo studies up to the date of publication were included. Promising protective effects were reported particularly on aminoglycosides, cisplatin, and ethanol. Saffron and its constituents significantly prevented biochemical and histopathological changes, mediating via antioxidant, anti-apoptosis, and anti-inflammatory effects. Despite success in animal models, no human study is available in this field and further well-designed clinical trials are necessary for better judgment.

Keywords


1. Schröder P, Lyubenova L, Huber C. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Environ Sci Pollut Res Int 2009; 16:795-804.
2. Van Vleet TR, Schnellmann RG. Toxic nephropathy: environmental chemicals. Semin Nephrol 2003; 23:500-508.
3. Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res 2019; 10:95-99.
4. Wu H, Huang J. Drug-induced nephrotoxicity:pathogenic mechanisms, biomarkers and prevention strategies. Curr Drug Metab 2018; 19:559-567.
5. Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician 2008; 78:743-750.
6. Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci 2019; 20: 3791.
7. Mollazadeh H, Emami SA, Hosseinzadeh H. Razi’s Al-Hawi and saffron (Crocus sativus): A review. Iran J Basic Med Sci 2015; 18:1153-1166.
8. Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. Daru 2015; 23: 31-39.
9. Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 2009; 23:768-774.
10. Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. Daru 2014; 22:16.
11. Hosseinzadeh H, Khosracan V. Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch Irn Med 2002; 5 (1): 44-47 
12. Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 2000; 14:149-152.
13. Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the morris water maze task. J Med Plants 2006; 5:40-50.
14. Erfanparast A, Tamaddonfard E, Taati M, Dabbaghi M. Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats. Avicenna J Phytomed 2015; 5:392-402.
15. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002; 2:7.
16. Poma A, Fontecchio G, Carlucci G, Chichiricco G. Anti-inflammatory properties of drugs from saffron crocus. Antiinflamm Antiallergy Agents Med Chem 2012;11(1):37-51.
17. Hosseinzadeh H, Jahanian Z. Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res 2010; 24:726-730.
18. Maleki-Saghooni N, Mirzaeii K, Hosseinzadeh H, Sadeghi R, Irani M. A systematic review and meta-analysis of clinical trials on saffron (Crocus sativus) effectiveness and safety on erectile dysfunction and semen parameters. Avicenna J Phytomed 2018; 8:198-209.
19. Hosseini A, Mousavi SH, Ghanbari A, Homaee Shandiz F, Raziee HR, Pezeshki Rad M, et al. Effect of saffron on liver metastases in patients suffering from cancers with liver metastases: A randomized, double blind, placebo-controlled clinical trial. Avicenna J Phytomed 2015; 5:434-440.
20. Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia 2006; 77:446-448.
21. Chahine N, Makhlouf H, Duca L, Martiny L, Chahine R. Cardioprotective effect of saffron extracts against acute doxorubicin toxicity in isolated rabbit hearts submitted to ischemia-reperfusion injury. Z Naturforsch C J Biosci 2014; 69:459-470.
22. Chahine N, Nader M, Duca L, Martiny L, Chahine R. Saffron extracts alleviate cardiomyocytes injury induced by doxorubicin and ischemia-reperfusion in vitro. Drug Chem Toxicol 2016; 39:87-96.
23. Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci 2013; 16:56-63.
24. Samarghandian S, Samini F, Azimi-Nezhad M, Farkhondeh T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett 2017; 659:26-32.
25. Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag 2009; 5:419-424.
26. Chichiriccò G, Ferrante C, Menghini L, Recinella L, Leone S, Chiavaroli A, et al. Crocus sativus by-products as sources of bioactive extracts: Pharmacological and toxicological focus on anthers. Food Chem Toxicol 2019; 126:7-14.
27. Karimi E, Oskoueian E, Hendra R, Jaafar HZ. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 2010; 15:6244-6256.
28. Rahaiee S, Moini S, Hashemi M, Shojaosadati SA. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Technol 2015; 52:1881-1888.
29. Pradhan J, Mohanty C, Sahoo SK. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life Sciences 2019; 216:39-48.
30. Yarijani ZM, Najafi H, Madani SH. Protective effect of crocin on gentamicin-induced nephrotoxicity in rats. Iran J Basic Med Sci 2016; 19:337-343.
31. Boroushaki MT, Sadeghnia HR. Protective effect of safranal against gentamicin-induced nephrotoxicity in rat. Iran J Med Sci 2009; 34:285-288.
32. Naghizadeh B, Boroushaki MT, Vahdati Mashhadian N, Mansouri MT. Protective effects of crocin against cisplatin-induced acute renal failure and oxidative stress in rats. Iran Biomed J 2008; 12:93-100.
33. Kumar A, Patil D, Rajamohanan PR, Ahmad A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 2013; 8:e71805.
34. Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2013; 71:555-564.
35. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH. G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 2002; 110:91-99.
36. Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 1992; 102 (Pt 3):401-416.
37. Takano Y, Okudaira M, Harmon BV. Apoptosis induced by microtubule disrupting drugs in cultured human lymphoma cells. Inhibitory effects of phorbol ester and zinc sulphate. Pathol Res Pract 1993; 189:197-203.
38. Madsen ML, Due H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother Pharmacol 2019; 84:471-485.
39. Öğünç Y, Demirel M, Yakar A, İncesu Z. Vincristine and ɛ-viniferine-loaded PLGA-b-PEG nanoparticles: pharmaceutical characteristics, cellular uptake and cytotoxicity. J Microencapsul 2017; 34:38-46.
40. Schrek R, Stefani SS. Inhibition by ionophore A23187 of the cytotoxicity of vincristine, colchicine and X-rays to leukemic lymphocytes. Oncology 1976; 33:132-135.
41. Martins DB, Lopes STA, Mazzanti CM, Spanevello R, Schmatz R, Corrêa M, et al. Lipid peroxidation in rats treated with vincristine sulphate and nandrolone decanoate. Arq Bras Med Vet Zootec 2011; 63:107-113.
42. Harchegani AB, Sohrabiyan M, Kaboutaraki HB, Shirvani H, Shahriary A. The protective effects of saffron stigma alcoholic extract against vincristine sulfate drug-induced renal toxicity in rat. Iran J Pharm Sci 2019; 15:83-94.
43. Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, et al. Gentamicin, a new antibiotic complez from miceomonospora. J Med Chem 1963; 6:463-464.
44. Gyselynck AM, Forrey A, Cutler R. Pharmacokinetics of gentamicin: Distribution and plasma and renal clearance. J Infect Dis 1971; 124 Suppl:S70-76.
45. Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 2013; 8:105-115.
46. Yaman İ, Balikci E. Protective effects of Nigella sativa against gentamicin-induced nephrotoxicity in rats. experimental and toxicologic pathology 2010; 62:183-190.
47. Hardman J, Limbird L, Molinoff P, Ruddon R, Goodman Gilman AE, McGraw-Hill. Chambers, HF. Aminoglycosides.  Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York 11 edition; 2006.
48. Morin JP, Viotte G, Vandewalle A, Van Hoof F, Tulkens P, Fillastre JP. Gentamicin-induced nephrotoxicity: A cell biology approach. Kidney Int 1980; 18:583-590.
49. Kadkhodaee M, Khastar H, Faghihi M, Ghaznavi R, Zahmatkesh M. Effects of co-supplementation of vitamins E and C on gentamicin-induced nephrotoxicity in rat. Exp Physiol 2005; 90:571-576.
50. Ali BH. Gentamicin nephrotoxicity in humans and animals: Some recent research. Gen Pharmacol 1995; 26:1477-1487.
51. Ben Ismail TH, Ali BH, Bashir AA. Influence of iron, deferoxamine and ascorbic acid on gentamicin-induced nephrotoxicity in rats. Gen Pharmacol 1994; 25:1249-1252.
52. Ajami M, Eghtesadi S, Pazoki-Toroudi H, Habibey R, Ebrahimi SA. Effect of crocus sativus on gentamicin induced nephrotoxicity. Biol Res 2010; 43:83-90.
53. Derakhshanfar A, Hashempour Sadeghian M, Abbasabadi N, Imanian MH. Histopathologic and biochemical study of the effect of saffron extract on gentamicin-induced nephrotoxicity in rats. Comp Clin Path 2015; 24:1347-1351.
54. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol Res 2010; 62:179-186.
55. Tavafi M. Protection of renal tubules against gentamicin induced nephrotoxicity. J Renal Inj Prev 2013; 2:5-6.
56. Abdullaev Jafarova F, Caballero-Ortega H, Riverón-Negrete L, Pereda-Miranda R, Rivera-Luna R, Manuel Hernández J, et al. In vitro evaluation of the chemopreventive potential of saffron. Rev Invest Clin 2002; 54:430-436.
57. Botsoglou NA, Florou-Paneri P, Nikolakakis I, Giannenas I, Dotas V, Botsoglou EN, et al. Effect of dietary saffron (Crocus sativus L.) on the oxidative stability of egg yolk. Br Poult Sci 2005; 46:701-707.
58. Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 2017; 22:609-619.
59. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2010; 2:2490-2518.
60. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2018; 31:15-25.
61. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014; 2014:967826.
62. de Jongh FE, van Veen RN, Veltman SJ, de Wit R, van der Burg ME, van den Bent MJ, et al. Weekly high-dose cisplatin is a feasible treatment option: Analysis on prognostic factors for toxicity in 400 patients. Br J Cancer 2003; 88:1199-1206.
63. Reece PA, Stafford I, Russell J, Khan M, Gill PG. Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: Relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol 1987; 5:304-309.
64. Siegert W, Beyer J, Strohscheer I, Baurmann H, Oettle H, Zingsem J, et al. High-dose treatment with carboplatin, etoposide, and ifosfamide followed by autologous stem-cell transplantation in relapsed or refractory germ cell cancer: A phase I/II study. The German testicular cancer cooperative study group. J Clin Oncol 1994; 12:1223-1231.
65. Hayati F, Hossainzadeh M, Shayanpour S, Abedi-Gheshlaghi Z, Beladi Mousavi SS. Prevention of cisplatin nephrotoxicity. J Nephropharmacol 2016; 5:57-60.
66. Jagadeeswaran R, Thiruna Vukkarasu C, Babu E, Sakthisekaran D. Effect of crocetin against cisplatin induced nephrotoxicity in firbosarcoma bearing rats with reference to antioxidant enzymes and lipid peroxidation. Biomedicine 2000; 20:275-281.
67. Karafakıoğlu YS, Bozkurt MF, Hazman Ö, Fıdan AF. Efficacy of safranal to cisplatin-induced nephrotoxicity. Biochem J 2017; 474:1195-1203.
68. Naghizadeh B, Mansouri SM, Mashhadian NV. Crocin attenuates cisplatin-induced renal oxidative stress in rats. Food Chem Toxicol 2010; 48:2650-2655.
69. el Daly ES. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. J Pharm Belg 1998; 53:87-93; discussion 93-85.
70. Faulds D, Goa KL, Benfield P. Erratum to: Cyclosporin: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 1993; 46:377.
71. de Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: Long-term consequences and challenges for the future. Am J Kidney Dis 2000; 35:333-346.
72. Kahan BD. Cyclosporine. N Engl J Med 1989; 321:1725-1738.
73. Kopp JB, Klotman PE. Cellular and molecular mechanisms of cyclosporin nephrotoxicity. J Am Soc Nephrol 1990; 1:162-179.
74. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 2009; 4:481-508.
75. Kim SI, Song HY, Hwang JH, Chong DL, Lee HY, Han DS, et al. Cyclosporine nephrotoxicity: The mechanisms of cell injury by cyclosporine A in renal proximal tubular cells. Transplant Proc 2000; 32:1621-1622.
76. Busauschina A, Schnuelle P, van der Woude FJ. Cyclosporine nephrotoxicity. Transplant Proc 2004; 36:229s-233s.
77. Pichler RH, Franceschini N, Young BA, Hugo C, Andoh TF, Burdmann EA, et al. Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol 1995; 6:1186-1196.
78. Lee J. Use of antioxidants to prevent cyclosporine a toxicity. Toxicol Res 2010; 26:163-170.
79. Al-Sadawi M, Rodriguez Ortega R, Sun N, Abdurahimova M, McFarlane SI. Jerky movement with ceftazidime: A case of ceftazidime-induced neurotoxicity with a review of the literature. Case Rep Med 2019; 2019:8936478.
80. Ditlove J, Weidmann P, Bernstein M, Massry SG. Methicillin nephritis. Medicine (Baltimore) 1977; 56:483-491.
81. Rankin GO, Sutherland CH. Nephrotoxicity of aminoglycosides and cephalosporins in combination. Adverse Drug React Acute Poisoning Rev 1989; 8:73-88.
82. Dhar MH, Shah KU, Ghongane BB, Rane SR. Nephroprotective activity of crocus sativus extract against gentamicin and/or ceftazidime - Induced nephrotoxicity in rats. Int J Pharma Bio Sci 2013; 4:864-870.
83. Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA. The pharmacology and clinical use of methotrexate. N Engl J Med 1983; 309:1094-1104.
84. Skubisz MM, Tong S. The evolution of methotrexate as a treatment for ectopic pregnancy and gestational trophoblastic neoplasia: A review. ISRN Obstet Gynecol 2012; 2012:637094.
85. Shaikh N, Sardar M, Raj R, Jariwala P. A rapidly fatal case of low-dose methotrexate toxicity. Case Rep Med 2018; 2018:9056086.
86. Devrim E, Cetin R, Kiliçoğlu B, Ergüder BI, Avci A, Durak I. Methotrexate causes oxidative stress in rat kidney tissues. Ren Fail 2005; 27:771-773.
87. Kolli VK, Abraham P, Isaac B, Selvakumar D. Neutrophil infiltration and oxidative stress may play a critical role in methotrexate-induced renal damage. Chemotherapy 2009; 55:83-90.
88. Perazella MA. Crystal-induced acute renal failure. Am J Med 1999; 106:459-465.
89. Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: Clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol 2010; 30:570-581.
90. Smeland E, Fuskevåg OM, Nymann K, Svendesn JS, Olsen R, Lindal S, et al. High-dose 7-hydromethotrexate: acute toxicity and lethality in a rat model. Cancer Chemother Pharmacol 1996; 37:415-422.
91. Widemann BC, Balis FM, Kempf-Bielack B, Bielack S, Pratt CB, Ferrari S, et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 2004; 100:2222-2232.
92. Abdel-Raheem IT, Khedr NF. Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:341-353.
93. Jahovic N, Cevik H, Sehirli AO, Yeğen BC, Sener G. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res 2003; 34:282-287.
94. Oktem F, Yilmaz HR, Ozguner F, Olgar S, Ayata A, Uzare E, et al. Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester. Toxicol Ind Health 2006; 22:241-247.
95. Jalili C, Ghanbari A, Roshankhah S, Salahshoor MR. Toxic effects of methotrexate on rat kidney recovered by crocin as a consequence of antioxidant activity and lipid peroxidation prevention. Iran Biomed J 2020; 24:39-46.
96. Leitão RF, Brito GA, Oriá RB, Braga-Neto MB, Bellaguarda EA, Silva JV, et al. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterol 2011; 11:90.
97. Potoka DA, Nadler EP, Upperman JS, Ford HR. Role of nitric oxide and peroxynitrite in gut barrier failure. World J Surg 2002; 26:806-811.
98. Mohan M, Kamble S, Gadhi P, Kasture S. Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food Chem Toxicol 2010; 48:436-440.
99. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65:157-170.
100. Karaman A, Fadillioglu E, Turkmen E, Tas E, Yilmaz Z. Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver. Pediatr Surg Int 2006; 22:428-434.
101. Liu LL, Li QX, Xia L, Li J, Shao L. Differential effects of dihydropyridine calcium antagonists on doxorubicin-induced nephrotoxicity in rats. Toxicology 2007; 231:81-90.
102.Wapstra FH, van Goor H, de Jong PE, Navis G, de Zeeuw D. Dose of doxorubicin determines severity of renal damage and responsiveness to ACE-inhibition in experimental nephrosis. J Pharmacol Toxicol Methods 1999; 41:69-73.
103. Hussain MA, Abogresha NM, AbdelKader G, Hassan R, Abdelaziz EZ, Greish SM. Antioxidant and anti-inflammatory effects of crocin ameliorate doxorubicin-induced nephrotoxicity in rats. Oxid Med Cell Longev 2021; 2021:8841726.
104. Mirzaei A, Zareian Baghdadabad L, Khorrami MH, Aghamir SMK. Arsenic trioxide; a novel therapeutic agent for prostate and bladder cancers. Transl res urol 2019; 1:1-7.
105. Miller WH, Jr., Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62:3893-3903.
106. Wang Y, Zhao H, Guo M, Shao Y, Liu J, Jiang G, et al. Arsenite renal apoptotic effects in chickens co-aggravated by oxidative stress and inflammatory response. Metallomics 2018; 10:1805-1813.
107.Robles-Osorio ML, Sabath-Silva E, Sabath E. Arsenic-mediated nephrotoxicity. Ren Fail 2015; 37:542-547.
108. Liu P, Xue Y, Zheng B, Liang Y, Zhang J, Shi J, et al. Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88:106959.
109. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 2012; 68:1243-1255.
110. Elyasi S, Khalili H, Dashti-Khavidaki S, Emadi-Koochak H, Mohammadpour A, Abdollahi A. Elevated vancomycin trough concentration: Increased efficacy and/or toxicity? Iran J Pharm Res 2014; 13:1241-1247.
111. Elyasi S, Khalili H, Hatamkhani S, Dashti-Khavidaki S. Prevention of vancomycin induced nephrotoxicity: A review of preclinical data. Eur J Clin Pharmacol 2013; 69:747-754.
112. Jenabi M, Hemmati A, Hafezi K, Mansouri E. Saffron extract prevents vancomycin-induced nephrotoxicity. Imaging Med 2019; 11.
113. Vale A. Ethanol. Medicine 2007; 35:615-616.
114. Pari L, Suresh A. Effect of grape (Vitis vinifera L.) leaf extract on alcohol induced oxidative stress in rats. Food Chem Toxicol 2008; 46:1627-1634.
115. Mani V, Siddique A, Arivalagan S, Thomas N, Namasivayam N. Zingerone ameliorates hepatic and renal damage in alcohol-induced toxicity in experimental rats. Int J Nutr Pharmacol Neurol Dis 2016; 6:125-132.
116. You Y, Yoo S, Yoon H-G, Park J, Lee Y-H, Kim S, et al. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. Food Chem Toxicol 2010; 48:1632-1637.
117. Vamvakas S, Teschner M, Bahner U, Heidland A. Alcohol abuse: potential role in electrolyte disturbances and kidney diseases. Clin Nephrol 1998; 49:205-213.
118. Azizi M, Abbasi N, Mohamadpour M, Bakhtiyari S, Asadi S, Shirzadpour E, et al. Investigating the effect of Crocus sativus L. petal hydroalcoholic extract on inflammatory and enzymatic indices resulting from alcohol use in kidney and liver of male rats. J Inflamm Res 2019; 12:269-283.
119. Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Tabatabaei Yazdi A, Hosseinzadeh H. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study. J Ethnopharmacol 2019; 237:286-299.
120. Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Yazdi AT, Hosseinzadeh H. Effect of crocin, an active saffron constituent, on ethanol toxicity in the rat: Histopathological and biochemical studies. Iran J Basic Med Sci 2020; 23:51-62.
121. Adefegha SA, Omojokun OS, Oboh G. Modulatory effect of protocatechuic acid on cadmium induced nephrotoxicity and hepatoxicity in rats in vivo. SpringerPlus 2015; 4:619-619.
122. Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 2015; 16:1484-1494.
123. Buha A, Wallace D, Matovic V, Schweitzer A, Oluic B, Micic D, et al. Cadmium exposure as a putative risk factor for the development of pancreatic cancer: Three different lines of evidence. BioMed Res Int 2017; 2017:1981837.
124. Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 2012; 343:2-12.
125. Zaree A, Javadi H, Adelipor M, Hojati Z, Kamali M, Bahadoran H. The study of anti genotoxic effects of saffron aqueous extract in cadmium chloride exposed mice kidney by comet assay. J Medicinal Plants 2015; 14:30-40.
126. Sadeghnia HR, Yousefsani BS, Rashidfar M, Boroushaki MT, Asadpour E, Ghorbani A. Protective effect of rutin on hexachlorobutadiene-induced nephrotoxicity. Ren Fail 2013; 35:1151-1155.
127. Birner G, Werner M, Ott MM, Dekant W. Sex differences in hexachlorobutadiene biotransformation and nephrotoxicity. Toxicol Appl Pharmacol 1995; 132:203-212.
128. Zhang H, Shen Y, Liu W, He Z, Fu J, Cai Z, et al. A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. Environ Pollut 2019; 253:831-840.
129. Swain A, Turton J, Scudamore C, Maguire D, Pereira I, Freitas S, et al. Nephrotoxicity of hexachloro-1:3-butadiene in the male Hanover Wistar rat; correlation of minimal histopathological changes with biomarkers of renal injury. J Appl Toxicol 2012; 32:417-428.
130. Boroushaki MT, Mofidpour H, Sadeghnia HR. Protective effect of safranal against hexachlorobutadiene-induced nephrotoxicity in rat. Iran J Med Sci 2007; 32:173-176.
131. Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: Occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120.
132. Ceruti A. Carcinogenic fungi (author’s transl). Ann Osp Maria Vittoria Torino 1980; 23:57-68.
133. Ciegler A, Beckwith AC, Jackson LK. Teratogenicity of patulin and patulin adducts formed with cysteine. Appl Environ Microbiol 1976; 31:664-667.
134. Ramalingam S, Bahuguna A, Kim M. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci Technol 2019; 83:99-113.
135. Elsawi NM, N.Al-Seni M, Haliem NGAE, El-wassimy MT, H.Salah, Abdo AS, et al., editors. Biochemical and histological studies of goji extract role on patulin mycotoxin on male rat kidney 2015; 2: 122-128.
136. Al-Hazmi MA. Patulin in apple juice and its risk assessments on albino mice. Toxicol Ind Health 2014; 30:534-545.
137. Boussabbeh M, Ben Salem I, Belguesmi F, Bacha H, Abid-Essefi S. Tissue oxidative stress induced by patulin and protective effect of crocin. Neurotoxicology 2016; 53:343-349.
138. Boussabbeh M, Prola A, Ben Salem I, Guilbert A, Bacha H, Lemaire C, et al. Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: Involvement of ROS-mediated ER stress pathway. Environ Toxicol 2016; 31:1851-1858.
139. Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers. J Hazard Mater 2007; 146:243-248.
140. Amin KA, Abdel Hameid H, 2nd, Abd Elsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol 2010; 48:2994-2999.
141. Erdemli Z, Altinoz E, Erdemli ME, Gul M, Bag HG, Gul S. Ameliorative effects of crocin on tartrazine dye-induced pancreatic adverse effects: a biochemical and histological study. Environ Sci Pollut Res Int 2021; 28:2209-2218.
142. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982; 47:412-426.
143. Erdemli ME, Gul M, Altinoz E, Zayman E, Aksungur Z, Bag HG. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed Pharmacother 2017; 96:930-935.
144. Ozturk F, Ucar M, Ozturk IC, Vardi N, Batcioglu K. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology 2003; 62:353-356.
145. Ahmad FF, Cowan DL, Sun AY. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil. Life Sci 1987; 41:2469-2475.
146. Ruprah M, Mant TG, Flanagan RJ. Acute carbon tetrachloride poisoning in 19 patients: Implications for diagnosis and treatment. Lancet 1985; 1:1027-1029.
147. Azab AE, Abushofa FA, Rahman HMA. Nephroprotective effect of aqueous extract of parsley against nephrotoxicity induced by carbon tetrachloride in the male rats. J Biotechnol. Bioeng 2019; 3:16-26.
148. Hassan MH, Bahashawan SA, Abdelghany TM, Abd-Allah GM, Ghobara MM. Crocin abrogates carbon tetrachloride-induced renal toxicity in rats via modulation of metabolizing enzymes and diminution of oxidative stress, apoptosis, and inflammatory cytokines. J Biochem Mol Toxicol 2015; 29:330-339.
149. Pradhan J, Mohanty C, Sahoo SK. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life Sci 2019; 216:39-48.
150. Erdemli ME, Gul M, Altinoz E, Aksungur Z, Gul S, Bag HG. Can crocin play a preventive role in Wistar rats with carbon tetrachloride-induced nephrotoxicity? Iran J Basic Med Sci 2018; 21:382-387.