Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction

Document Type : Original Article


1 College of Pharmacy, Xinxiang Medical University, Xinxiang, China

2 Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China

3 Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China

4 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China



Objective(s): Epigallocatechin-3-gallate (EGCG) has a good therapeutic effect on type 2 diabetes mellitus (T2DM). This work was designed to explore EGCG’s effectiveness in insulin resistance (IR) and pancreas islet β-cell function in a rat model of T2DM. 
Materials and Methods: Eight-week-old male Sprague Dawley rats were randomly divided into 6 groups, including the Control (normal diet), Diabetes (high-sucrose high-fat [HSHF] diet combined with tail vein injection of streptozotocin [STZ] for T2DM induction) and Treatment Diabetic rats which were treated with metformin [500 mg/kg/d] or EGCG [25, 50 or 100 mg/kg/d] intragastric administration for 10 weeks. With the exception of control animals, the other groups were fed the HSHF diet.  EGCG’s effects on IR and insulin secretion were assessed by measuring body weights, and fasting blood glucose (FBG), postprandial blood glucose (PBG) and insulin levels. The morphological and molecular changes of pancreas islet β-cells were examined by hematoxylin-eosin (H&E) staining, transmission electron microscopy (TEM) and immunofluorescence.
Results: Rats fed the HSHF diet combined with STZ treatment had increased body weights and blood glucose amounts, accompanied by IR and impaired β-cell function, induced T2DM, and EGCG dose-dependently restored the above indicators. Additionally, EGCG upregulated the pancreatic transcription factors pancreatic duodenal homeobox protein-1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA).
Conclusion: These results suggest that EGCG reduces blood glucose amounts, and improve IR and islet β-cell disorder in T2DM.


1. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017; 8:6-17. 
2.    Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of Diabetes 2016. J Diabetes Res 2016; 1-3.
3.    Campos J, Ramos A, Szego T, Zilberstein B, Feitosa H, Cohen R. The role of metabolic surgery for patients with obesity grade i and type 2 diabetes not controlled clinically. Arq Bras Cir Dig 2016; 29:102-106.
4.    Chen G, Yang X, Yang X, Li L, Luo J, Dong H, et al. Jia-Wei-Jiao-Tai-Wan ameliorates type 2 diabetes by improving β cell function and reducing insulin resistance in diabetic rats. BMC Complement Altern Med 2017; 17:507:517.
5. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52:102-110.
6. Chen J, Zhang Z, Yu P, Gan W, Ren K, Zhang F, et al. Beneficial effects of green tea on age related diseases. Front Biosci 2020; 12:70-91
7. Asanova E, Salvadó J, Crescenti A, Gibert-Ramos A. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: a narrative review. Int J Mol Sci 2019; 20:532-547.
8. Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, et al. Inhibitory effects of (-)-epigallocatechin-3-gallate on esophageal cancer. Molecules 2019; 24:954-973.
9. Yan J, Zhao Y, Suo S, Liu Y, Zhao B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic Biol Med 2012; 52:1648-1657. 
10. Ferreira MA, Silva DM, de Morais AC Jr, Mota JF, Botelho PB. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults - a review. Obes Rev 2016; 17:1316-1328.
11. Onishi S, Kataoka K. PIASy is a SUMOylation-independent negative regulator of the insulin transactivator MafA. J Mol Endocrinol 2019; 63:297-308.
12. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther 2017; 8:240-246.
13. Le Lay J, Stein R. Involvement of PDX-1 in activation of human insulin gene transcription. J Endocrinol 2006; 188:287-294.
14. Yao X, Li K, Liang C, Zhou Z, Wang J, Wang S, et al. Tectorigenin enhances PDX1 expression and protects pancreatic β-cells by activating ERK and reducing ER stress. J Biol Chem 2020; 295:12975-12992. 
15. Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 2018; 115:1027-1032.
16. Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, et al. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-496. 
17. Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008; 704045:1-9.
18. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000; 49:1390-1394.
19. Wilkinson-Berka JL, Kelly DJ, Koerner SM, Jaworski K, Davis B, Thallas V, et al. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 2002; 51:3283-3289.
20.  Salgado AL, Carvalho Ld, Oliveira AC, Santos VN, Vieira JG, Parise ER. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol 2010; 47:165-169.
21. Andrade S, Loureiro JA, Pereira MC. Green tea extract-biomembrane interaction study: the role of its two major components, (-)-epigallocatechin gallate and (-)-epigallocatechin. Biochim Biophys Acta Biomembr 2021; 1863:183476-183485. 
22. Bao J, Liu W, Zhou HY, Gui YR, Yang YH, Wu MJ, et al. Epigallocatechin-3-gallate alleviates cognitive deficits in APP/PS1 mice. Curr Med Sci 2020; 40:18-27.
23. Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, et al. Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin Cancer Biol 2022; 80:256-275.
24. Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018; 210:296-310.
25. Faheem NM, Ali TM. The counteracting effects of (-)-epigallocatechin-3-gallate on the immobilization stress-induced adverse reactions in rat pancreas. Cell Stress Chaperones 2021; 26:159-172.
26. Park JM, Shin Y, Kim SH, Jin M, Choi JJ. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: lactobacillus is a putative target. J Med Food 2020; 23:1033-1042.
27. Zhang Q, Yuan H, Zhang C, Guan Y, Wu Y, Ling F, et al. Epigallocatechin gallate improves insulin resistance in HepG2 cells through alleviating inflammation and lipotoxicity. Diabetes Res Clin Pract 2018; 142:363-373. 
28. Burghardt KJ, Seyoum B, Mallisho A, Burghardt PR, Kowluru RA, Yi Z. Atypical antipsychotics, insulin resistance and weight; a meta-analysis of healthy volunteer studies. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:55-63. 
29.  Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond) 2016; 13:15-27.
30.  Brown AE, Walker M. Genetics of insulin resistance and the metabolic syndrome. Curr Cardiol Rep 2016; 18:75-82. 
31. Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem 2018; 119:105-110.
32. Ruiz-Montero PJ, González-Fernández FT, Mikalacki M, Martín-Moya R. The use of anthropometrical variables for detection of homeostatic measurement assessment-insulin resistance (HOMA-IR) in female participants of a physical exercise program. Bratisl Lek Listy 2021; 122:727-731.
33. Mohan T, Velusamy P, Chakrapani LN, Srinivasan AK, Singh A, Johnson T, et al. Impact of EGCG supplementation on the progression of diabetic nephropathy in rats: an insight into fibrosis and apoptosis. J Agric Food Chem 2017; 65:8028-8036.
34. Li X , Li S , Chen M , Wang J , Xie B , Sun Z. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food Funct 2018; 9:4651-4663.
35. Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. β-Cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes 2019; 68:1121-1129.
36. Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019; 129:4001-4008.
37. Arcidiacono B, Iiritano S, Chiefari E, Brunetti FS, Gu G, Foti DP, et al. Cooperation between HMGA1, PDX-1, and MafA is essential for glucose-induced insulin transcription in pancreatic beta cells. Front Endocrinol (Lausanne) 2015; 5:237-246. 
38. Moustafa EM, Moawed FSM, Abdel-Hamid GR. Icariin promote stem cells regeneration and repair acinar cells in L-arginine / radiation-inducing chronic pancreatitis in rats. Dose Response 2020; 18:1-13.
39. Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type2 diabetes in db/db mice by inhibiting PDX1 methylation. Mol Med Rep 2021; 23:72-79.
40. Hayes HL, Zhang L, Becker TC, Haldeman JM, Stephens SB, Arlotto M, et al. A pdx-1-regulated soluble factor activates rat and human islet cell proliferation. Mol Cell Biol  2016; 36:2918-2930. 
41. Pedica F, Beccari S, Pedron S, Montagna L, Piccoli P, Doglioni C, et al. PDX-1 (pancreatic/duodenal homeobox-1 protein 1). Pathologica 2014; 106:315-321.
42. Xiafukaiti G, Maimaiti S, Ogata K, Kuno A, Kudo T, Shawki HH, et al. MafB is important for pancreatic β-Cell maintenance under a MafA-deficient condition. Mol Cell Biol 2019; 39:1-13.