Inconsistency in the expression pattern of a five-lncRNA signature as a potential diagnostic biomarker for gastric cancer patients in bioinformatics and in vitro

Document Type : Original Article

Authors

1 Medical Genetics and Molecular Medicine Department, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran

2 Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran

3 Human Genetics Division, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Objective(s): Due to diagnosis of gastric cancer in advanced stages as well as its poor prognosis, finding biomarkers is essential. In this study, using the TCGA RNAseq data of gastric cancer patients, we evaluated the diagnostic value of lncRNAs that had differential expression.
Materials and Methods: We evaluated P-value, FDR, and log fold change for whole transcripts. Next, by comparison of the RNAseq gene names with the total known lncRNA names, we identified differential expressed lncRNAs. Following this, specificity and sensitivity for lncRNAs coming from the previous step were calculated. For more confirmation, we predicted target genes and performed GO and KEGG signaling pathway analysis.  In the end, we examined reliability and consistency of expression of this signature in three gastric cancer cell lines and one of them in twenty tumors and tumor-adjacent normal tissue samples using qRT-PCR.
Results: Five lncRNAs had proper sensitivity and specificity and had target genes involved in cancer-related signaling pathways; however, they showed different expression patterns in TCGA data and in vitro.
Conclusion: The results of our study demonstrated that the five-lncRNAs PART1, UCA1, DIRC3, HOTAIR, and HOXA11AS require more investigation to be confirmed as diagnostic biomarkers in gastric cancer.

Keywords


1. Sugano K. Screening of gastric cancer in Asia. Best Pract Res Clin Gastroenterol 2015; 29:895-905.
2. Ferlay J EM, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, et al. Global cancer observatory: Cancer today france: International Agency for Research on Cancer; 2020. 
3. Maconi G, Manes G, Porro GB. Role of symptoms in diagnosis and outcome of gastric cancer. World J Gastroenterol 2008; 14:1149-1155.
4. Saka M, Morita S, Fukagawa T, Katai H. Present and future status of gastric cancer surgery. Jpn J Clin Oncol 2011; 41:307-313.
5. Yin Y, Yan P, Lu J, Song G, Zhu Y, Li Z, et al. Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell stem cell 2015; 16:504-516.
6. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cel Mol Life Sci 2013; 70:4785-4794.
7. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nature Rev Genet 2014; 15:7-21.
8. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol 2013; 6:1-7.
9. Lindsay MA, Griffiths-Jones S, Young RS, Ponting CP. Identification and function of long non-coding RNAs. Essays Biochem 2013; 54:113-126.
10. Quan M, Chen J, Zhang D. Exploring the secrets of long noncoding RNAs. Int J Mol Sci 2015; 16:5467-5496.
11. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Invest 2016; 126:2775-2782.
12. Spizzo R, Almeida MIe, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 2012; 31:4577-4587.
13. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3:8-36.
14. Stower H. X inactivation by titration. Nat Rev Genet 2013; 14:518-518.
15. Ren W, Zhang J, Li W, Li Z, Hu S, Suo J, et al. A tumor-specific prognostic long non-coding RNA signature in gastric cancer. Med Sci Monit 2016; 22:3647-3657.
16. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007; 282:24731-24742.
17. Rinn JL. lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol 2014; 6:1-3.
18. Kim HS, Minna JD, White MA. GWAS meets TCGA to illuminate mechanisms of cancer predisposition. Cell 2013; 152:387-389.
19. Zhang Y, Li H, Zhang W, Che Y, Bai W, Huang G. LASSO‑based Cox‑PH model identifies an 11‑lncRNA signature for prognosis prediction in gastric cancer. Mol Med Rep 2018; 18:5579-5593.
20. Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 2015; 5:1-10.
21. Cabanski CR, White NM, Dang HX, Silva-Fisher JM, Rauck CE, Cicka D, et al. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol 2015; 12:628-642.
22. Fang X-y, Pan H-f, Leng R-x, Ye D-q. Long noncoding RNAs: novel insights into gastric cancer. Cancer Lett 2015; 356:357-366.
23. Miao Y, Sui J, Xu S-Y, Liang G-Y, Pu Y-P, Yin L-H. Comprehensive analysis of a novel four-lncRNA signature as a prognostic biomarker for human gastric cancer. Oncotarget 2017; 8:75007-75024.
24. Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: a web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 2019; 10:462-267.
25. Cheng L WP, Tian R, Wang S, Guo Q, Luo M, Zhou W, et al. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse: Europe PMC; 2019. Available from: https://ngdc.cncb.ac.cn/databasecommons/database/id/27.
26. Szklarczyk D, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets . Nucleic Acids Res 2021; 49:605-612.
27. Hu X, Feng H, Huang H, Gu W, Fang Q, Xie Y, et al. Downregulated long noncoding RNA PART1 inhibits proliferation and promotes apoptosis in bladder cancer. Technol Cancer Res Treat 2019; 18:1-9.
28. Kang M, Ren M, Li Y, Fu Y, Deng M, Li C. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res 2018; 37:1-16.
29. Hu Y, Ma Z, He Y, Liu W, Su Y, Tang Z. PART-1 functions as a competitive endogenous RNA for promoting tumor progression by sponging miR-143 in colorectal cancer. Biochem Biophys Res Commun 2017; 490:317-323.
30. Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, et al. A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 2013; 58:123-131.
31. Yang L, Zhang L, Lu L, Wang Y. lncRNA UCA1 increases proliferation and multidrug resistance of retinoblastoma cells through downregulating miR-513a-5p. DNA Cell Biol 2020; 39:69-77.
32. Shi F-t, Chen L-d, Zhang L-f. Long noncoding RNA UCA1 overexpression is associated with poor prognosis in digestive system malignancies: a meta-analysis. Curr Med Sci 2019; 39:694-701.
33. Shan L, Liu C, Ma C. High expression of serum UCA1 may be a potential biomarker for clinical diagnosis of gastric cancer. Clin Lab 2019; 65.
34. Li Z, Yu D, Li H, Lv Y, Li S. Long non‑coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int J Oncol 2019; 54:1033-1042.
35. Lu H, Liu X. UCA1 promotes papillary thyroid carcinoma development by stimulating cell proliferation via Wnt pathway. Eur Rev Med Pharmacol Sci 2018; 22:5576-5582.
36. Yang X, Liu W, Xu X, Zhu J, Wu Y, Zhao K, et al. Downregulation of long non‑coding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelial‑mesenchymal transition in colorectal cancer cells. Oncol Rep 2018; 40:1554-1564.
37. Wang J, Li L, Wu K, Ge W, Zhang Z, Gong L, et al. Knockdown of long noncoding RNA urothelial cancer-associated 1 enhances cisplatin chemosensitivity in tongue squamous cell carcinoma cells. Pharmazie 2016; 71:598-602.
38. Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, et al. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet 2019; 15:1-22.
39. Shen Z, Ren W, Bai Y, Chen Z, Li J, Li B, et al. DIRC3 and near NABP1 genetic polymorphisms are associated laryngeal squamous cell carcinoma patient survival. Oncotarget 2016; 7:79596- 79604.
40. Dong X, He X, Guan A, Huang W, Jia H, Huang Y, et al. Long non-coding RNA hotair promotes gastric cancer progression via miR-217-GPC5 axis. Life Sci 2019; 217:271-282.
41. Song Y, Wang R, Li L-W, Liu X, Wang Y-F, Wang Q-X, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol 2019; 54:77-86.
42. Xun J, Wang C, Yao J, Gao B, Zhang L. Long non-coding RNA HOTAIR modulates KLF12 to regulate gastric cancer progression via PI3K/ATK signaling pathway by sponging miR-618. Onco Targets Ther 2019; 12:10323-10334.
43. Fattahi S, Kosari‐Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, et al. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: a novel approach to personalized medicine. J Cell Physiol 2020; 235:3189-3206.
44. Xiao J, Lai H, Wei SH, Ye ZS, Gong FS, Chen LC. lnc RNA HOTAIR promotes gastric cancer proliferation and metastasis via targeting miR‐126 to active CXCR 4 and RhoA signaling pathway. Cancer Med 2019; 8:6768-6779.
45. Zhao X, Li X, Zhou L, Ni J, Yan W, Ma R, et al. LncRNA HOXA11‐AS drives cisplatin resistance of human LUAD cells via modulating miR‐454‐3p/Stat3. Cancer Sci 2018; 109:3068-3079.
46. Li N, Yang M, Shi K, Li W. Long non-coding RNA HOXA11-AS in human cancer: a meta-analysis. Clinica Chimica Acta 2017; 474:165-170.
47. Su JC, Hu XF. Long non‑coding RNA HOXA11‑AS promotes cell proliferation and metastasis in human breast cancer. Mol Med Rep 2017; 16:4887-4894.
48. Chen J-H, Zhou L-Y, Xu S, Zheng Y-L, Wan Y-F, Hu C-P. Overexpression of lncRNA HOXA11-AS promotes cell epithelial–mesenchymal transition by repressing miR-200b in non-small cell lung cancer. Cancer Cell Int 2017; 17:1-11.
49. Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, et al. Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol Cancer 2017; 16:1-9.
50. Li T, Xu C, Cai B, Zhang M, Gao F, Gan J. Expression and clinicopathological significance of the lncRNA HOXA11-AS in colorectal cancer. Oncol Lett 2016; 12:4155-4160.
51. Spänkuch B, Heim S, Kurunci-Csacsko E, Lindenau C, Yuan J, Kaufmann M, et al. Down-regulation of polo-like kinase 1 elevates drug sensitivity of breast cancer cells in vitro and in vivo. Cancer Res 2006; 66:5836-5846.
52. Choi BH, Pagano M, Dai W. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle. J Biol Chem 2014; 289:14066-14074.
53.Hamidi AA, Forghanifard MM, Gholamin M, Moghbeli M, Memar B, Jangjoo A, et al. Elucidated tumorigenic role of MAML1 and TWIST1 in gastric cancer is associated with Helicobacter pylori infection. Microb Pathog 2022; 162:105304-105311.