Transient receptor potential vanilloid type-1 regulates periodontal disease damage via the PI3K/AKT signaling pathway

Document Type : Original Article


1 Stomatological Hospital of Chongqing Medical University, Chongqing, China

2 Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China

3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China


Objective(s): This study aimed to investigate the function of transient receptor potential vanilloid 1 (TRPV1) in regulating periodontal lesions. In addition, we explored the underlying mechanism of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway.
Materials and Methods: Lipopolysaccharide (LPS) stimulation of human periodontal ligament cells (HPDLCs) was used to construct a periodontitis cell model, and experimental periodontitis (EP) rats were established by ligation. The mechanism by which TRPV1 regulates periodontitis was further verified by injecting the TRPV1 agonist capsaicin (CPS) and antagonist capsazepine (CPZ) into the gingiva of rats; the alveolar bone losses in each group were measured by stereomicroscopy. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting (WB) were used to research the expression of TRPV1 and proinflammatory cytokines, and WB was performed to test the phosphorylation of PI3K and AKT.
Results: In vitro experiments showed that LPS induced the upregulation of TRPV1 and proinflammatory cytokines and promoted the phosphorylation of PI3K and AKT proteins in HPDLCs, which was consistent with their expression in the rat periodontitis model. Moreover, in vivo studies indicated that CPZ had anti-inflammatory effects through the PI3K/AKT pathway and inhibited bone loss induced by periodontal ligation in rats, while CPS had the opposite effect.
Conclusion: TRPV1 was involved in the process of alveolar bone defects and the inflammatory response in rats with periodontitis induced by ligation. Its mechanism might be related to the phosphorylation of related proteins in the PI3K/AKT signaling pathway.


1. Van Dyke TE, Bartold PM, Reynolds EC. The nexus between periodontal inflammation and dysbiosis. Front Immunol 2020; 11:511-519. 
2. Miranda TS, Figueiredo N de F, Figueiredo LC, Silva HDP da, Rocha FRG, Duarte PM. Cytokine profiles of healthy and diseased sites in individuals with periodontitis. Arch Oral Biol 2020; 120:104957-104963. 
3. Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ, Shen S, Orraca L, et al. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J Clin Periodontol 2014; 41:853–861. 
4. Izawa A, Ishihara Y, Mizutani H, Kobayashi S, Goto H, Okabe E, et al. Inflammatory bone loss in experimental periodontitis induced by aggregatibacter actinomycetemcomitans in interleukin-1 receptor antagonist knockout mice. Infect Immun 2014; 82:1904–1913. 
5. Hirayama A, Awano S, Seta Y, Ansai T. ADAM17 regulates TNF-α expression upon lipopolysaccharide stimulation in oral keratinocytes. Biomed Res 2017; 38:157–165. 
6. Fujihara R, Usui M, Yamamoto G, Nishii K, Tsukamoto Y, Okamatsu Y, et al. Tumor necrosis factor-α enhances RANKL expression in gingival epithelial cells via protein kinase A signaling. J Periodont Res 2014; 49:508–517. 
7. Kawamoto D, Amado PPL, Albuquerque-Souza E, Bueno MR, Vale GC, Saraiva L, et al. Chemokines and cytokines profile in whole saliva of patients with periodontitis. Cytokine 2020; 135:155197-155205. 
8. Kang S-Y, Seo SY, Bang SK, Cho SJ, Choi K-H, and Ryu Y. Inhibition of spinal TRPV1 reduces NMDA receptor 2B phosphorylation and produces anti-nociceptive effects in mice with inflammatory pain. Int J Mol Sci 2021; 22:11177-11189. 
9. Zholos A. TRP channels in respiratory pathophysiology: the role of oxidative, chemical irritant and temperature stimuli. Curr Neuropharmacol 2015; 13:279–291. 
10. Güzel M, Akpınar O. Hydroxychloroquine attenuates acute inflammation (LPS)-induced apoptosis via inhibiting TRPV1 channel/ROS signaling pathways in human monocytes. Biology(basal) 2021; 10:967-983. 
11. Xu W, Liu J, Ma D, Yuan G, Lu Y, Yang Y. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS ONE 2017; 12:1-14. 
12. Austah ON, Ruparel NB, Henry MA, Fajardo RJ, Schmitz JE, Diogenes A. Capsaicin-sensitive innervation modulates the development of apical periodontitis. J Endod 2016; 42:1496–1502. 
13. Shen S, Al-Thumairy HW, Hashmi F, Qiao L-Y. Regulation of transient receptor potential cation channel subfamily V1 protein synthesis by the phosphoinositide 3-kinase/Akt pathway in colonic hypersensitivity. Exp Neurol 2017; 295:104–115. 
14. Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat Immunol 2014; 15:1055–1063. 
15. Kanno K, Shimizu K, Shinoda M, Hayashi M, Takeichi O, Iwata K. Role of macrophage-mediated Toll-like receptor 4–interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation. J Neuroinflammation 2020; 17:312-326. 
16. Sadofsky LR, Ramachandran R, Crow C, Cowen M, Compton SJ, Morice AH. Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts. Exp Lung Res 2012; 38:75–81. 
17. Wang Y, Cui L, Xu H, Liu S, Zhu F, Yan F, et al. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis 2017; 260:13–19. 
18. Lu C-L, Teng T-Y, Liao M-T, Ma M-C. TRPV1 hyperfunction contributes to renal inflammation in oxalate nephropathy. Int J Mol Sci 2021; 22:6204-6224. 
19. Ying S, Tan M, Feng G, Kuang Y, Chen D, Li J, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics 2020; 10:9789–9807. 
20. Sooampon S, Phoolcharoen W, Pavasant P. Thermal stimulation of TRPV1 up-regulates TNFα expression in human periodontal ligament cells. Arch Oral Biol 2013; 58:887–895. 
21. Idris AI, Landao-Bassonga E, Ralston SH. The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 2010; 46:1089–1099. 
22. Ossola CA, Balcarcel NB, Astrauskas JI, Bozzini C, Elverdin JC, Fernández‐Solari J. A new target to ameliorate the damage of periodontal disease: the role of transient receptor potential vanilloid type‐1 in contrast to that of specific cannabinoid receptors in rats. J Periodontol 2019; 90:1325–1335. 
23. Han Y, Wang X, Ma D, Wu X, Yang P, Zhang J. Ipriflavone promotes proliferation and osteogenic differentiation of periodontal ligament cells by activating GPR30/PI3K/AKT signaling pathway. Drug Des Devel Ther 2018; 12:137–148. 
24. Liu F, Huang X, He J, Song C, Peng L, Chen T, et al. Plantamajoside attenuates inflammatory response in LPS-stimulated human gingival fibroblasts by inhibiting PI3K/AKT signaling pathway. Microb Pathog 2019; 127:208–211. 
25. Liu J, Wang X, Zheng M, Luan Q. Lipopolysaccharide from porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 2018; 211:133–139. 
26. Qiu X, Yu Y, Liu H, Li X, Sun W, Wu W, et al. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform. Acta Biomaterialia 2021; 135:593-605. 
27. Zhao B, Zhang W, Xiong Y, Zhang Y, Zhang D, Xu X. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism. J Mol Hist 2020; 51:161–171. 
28. Węglarz L, Wawszczyk J, Orchel A, Jaworska-Kik M, Dzierzewicz Z. Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1β. Dig Dis Sci 2007; 52:93-102. 
29. Kim E-N, Nabende WY, Jeong H, Hahn D, Jeong G-S. The marine-derived natural product epiloliolide isolated from sargassum horneri regulates NLRP3 via PKA/CREB, promoting proliferation and anti-inflammatory effects of human periodontal ligament cells. Marine Drugs 2021; 19:388-402. 
30. Kang S-K, Park Y-D, Kang S-I, Kim D-K, Kang K-L, Lee S-Y, et al. Role of resistin in the inflammatory response induced by nicotine plus lipopolysaccharide in human periodontal ligament cells in vitro. J Periodont Res 2015; 50:602–613. 
31. Basso FG, Pansani TN, Turrioni APS, Soares DG, de Souza Costa CA, Hebling J. Tumor necrosis factor-α and interleukin (IL)-1β, IL-6, and IL-8 impair in vitro migration and induce apoptosis of gingival fibroblasts and epithelial cells, delaying wound healing. J Periodontol 2016; 87:990–996. 
32. Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010; 89:1349–1363. 
33. Romero-Castro NS, Vázquez-Villamar M, Muñoz-Valle JF, Reyes-Fernández S, Serna-Radilla VO, García-Arellano S, et al. Relationship between TNF-α, MMP-8, and MMP-9 levels in gingival crevicular fluid and the subgingival microbiota in periodontal disease. Odontology 2020; 108:25–33. 
34. Bae W-J, Shin M-R, Kang S-K, Zhang-Jun, Kim J-Y, Lee S-C, et al. HIF-2 inhibition supresses inflammatory responses and osteoclastic differentiation in human periodontal ligament cells: HIF-2α effects on inflammatory response and osteoclastogensis. J Cell Biochem 2015; 116:1241–1255. 
35. Jung J-I, Kim S, Baek S-M, Choi S-I, Kim G-H, Imm J-Y. Ecklonia cava extract exerts anti-inflammatory effect in human gingival fibroblasts and chronic periodontitis animal model by suppression of pro-inflammatory cytokines and chemokines. Foods 2021; 10:1656-1668. 
36. Yang Y, Wang L, Zhang H, Luo L. Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression. J Mol Med 2022; 100:77-86.
37. Xia R, Samad T, Btesh J, Jiang L-H, Kays I, Stjernborg L, et al. TRPV1 signaling: mechanistic understanding and therapeutic potential. Curr Top Med Chem 2011; 11:2180–2191. 
38. Bryk M, Chwastek J, Kostrzewa M, Mlost J, Pędracka A, Starowicz K. Alterations in anandamide synthesis and degradation during osteoarthritis progression in an animal model. Int J Mol Sci 2020; 21:7381-7399. 
39. Rotpenpian N, Arayapisit T, Roumwong A, Pakaprot N, Tantisira M, Wanasuntronwong A. A standardized extract of centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J Appl Oral Sci 2021; 29:1-8. 
40. Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of neural transient receptor potential channels in peripheral inflammation. Front Immunol 2020; 11:590261-590278. 
41. Yang M, Jung S, Sethi G, Ahn K. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory Ddseases. Molecules 2019; 24:995-1008. 
42. Vigna SR, Shahid RA, Nathan JD, McVey DC, Liddle RA. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats. Pancreas 2011; 40:708–714. 
43. Avellan N-L, Kemppainen P, Tervahartiala T, Vilppola P, Forster C, Sorsa T. Capsaicin-induced local elevations in collagenase-2 (matrix metalloproteinase-8) levels in human gingival crevice fluid. J Periodontal Res 2006; 41:33–38. 
44. Hoare A, Soto C, Rojas-Celis V, Bravo D. Chronic inflammation as a link between periodontitis and carcinogenesis. Mediators Inflamm 2019:2019; :1–14. 
45. Kim T-H, Choi SJ, Lee YH, Song GG, Ji JD. Combined therapeutic application of mTOR inhibitor and vitamin D3 for inflammatory bone destruction of rheumatoid arthritis. Med Hypotheses 2012; 79:757–760. 
46. Wang Q, Zhang B, Yu J-L. Farrerol inhibits IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by suppressing PI3K/AKT/NF-κB signaling pathway. Arch Oral Biol 2016; 62:28–32. 
47. Wang Q, Sun L, Gong Z, Du Y. Veratric acid inhibits LPS-induced IL-6 and IL-8 production in human gingival fibroblasts. Inflammation 2016; 39:237–242. 
48. Yuan F-L, Xu R-S, Jiang D-L, He X-L, Su Q, Jin C, et al. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone 2015; 75:128–137.