Effect of cyanocobalamin (vitamin B12) on paraquat-induced brain injury in mice

Document Type : Original Article


1 Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

4 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

5 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

8 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

9 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

10 Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): The goal of this study was to evaluate the neuroprotective effects of vit B12 on paraquat-induced neurotoxicity.
Materials and Methods: Thirty-six male mice were randomly divided into six groups. Three groups were treated intraperitoneally with paraquat (10 mg/kg) twice a week (with a 3-day interval) for 3 weeks. Normal saline, vit B12 (1 mg /kg), or vit C (50 mg/kg) was injected 30 min before paraquat administration. Other groups only received normal saline (control), vit B12, or vit C in the same protocol. Motor performance and coordination were assayed by challenging beam traversal, pole, open field, and rotarod tests.  The hippocampus and serum samples were isolated to evaluate the oxidative stress (GSH and ROS), apoptosis (caspase 3), and inflammatory markers (TNF-α and IL-1β).
Results: Administration of paraquat leads to induction of motor deficits, which were improved by treatment with vit B12. In addition, vit B12 could prevent oxidative damage, apoptosis, and inflammation caused by paraquat.
Conclusion: It seems that vit B12 could be a novel therapeutic agent in the management of paraquat induced-neurotoxicity. 


1. Sittipunt C. Paraquat poisoning. Respir Care 2005; 50:383-385.
2. Zyoud SeH. Investigating global trends in paraquat intoxication research from 1962 to 2015 using bibliometric analysis. Am J Ind Med 2018; 61:462-470.
3. Dawson AH, Eddleston M, Senarathna L, Mohamed F, Gawarammana I, Bowe SJ, et al. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. PLoS Med 2010; 7:e1000357.
4. Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology 2002; 180:65-77.
5. FAO/WHO. (2022). Pesticide residues in food-Report 2021 - Joint FAO/WHO Meeting on Pesticide Residues. Rome: FAO/WHO.
6. Banday T, Bashir S, Bhat S, Ashwin K, Praveen JS. Manifestation and management of paraquat intoxiction. A deadly poison. IOSR J Dent Med Sci 2013; 12:74-76.
7. Vale J, Meredith T, Buckley B. Paraquat poisoning: clinical features and immediate general management. Hum Toxicol 1987; 6:41-47.
8. Dinis-Oliveira RJ, Sarmento A, Reis P, Amaro A, Remião F, Bastos ML, et al. Acute paraquat poisoning: report of a survival case following intake of a potential lethal dose. Pediatr Emerg Care 2006; 22:537-540.
9. Agarwal R, Srinivas R, Aggarwal A, Gupta D. Experience with paraquat poisoning in a respiratory intensive care unit in North India. Singapore Med J 2006; 47:1033-1037.
10. Chen L, Yoo S-E, Na R, Liu Y, Ran Q. Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol Aging 2012; 33:432. e415-432. e426.
11. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-a mechanistic approach. Toxicol Lett 2014; 230:85-103.
12. Miranda-Contreras L, Dávila-Ovalles R, Benítez-Díaz P, Peña-Contreras Z, Palacios-Prü E. Effects of prenatal paraquat and mancozeb exposure on amino acid synaptic transmission in developing mouse cerebellar cortex. Brain Res 2005; 160:19-27.
13. Todorov T. Paraquat neurotoxicity. Revista Médica Sinergia 2018; 3:3-6.
14. Niveditha S, Ramesh S, Shivanandappa T. Paraquat-induced movement disorder in relation to oxidative stress-mediated neurodegeneration in the brain of Drosophila melanogaster. Neurochem Res 2017; 42:3310-3320.
15. Brouwer M, Huss A, van der Mark M, Nijssen PC, Mulleners WM, Sas AM, et al. Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int 2017; 107:100-110.
16. Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 2005; 88:193-201.
17. Mitra S, Chakrabarti N, Bhattacharyya A. Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 2011; 8:1-22.
18. Liou H, Tsai M, Chen C, Jeng J, Chang Y, Chen S, et al. Environmental risk factors and Parkinson’s disease: a case‐control study in Taiwan. Neurology 1997; 48:1583-1588.
19. McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA. Role of oxidative stress in paraquat‐induced dopaminergic cell degeneration. J Neurochem 2005; 93:1030-1037.
20. Bartlett RM, Holden JE, Nickles RJ, Murali D, Barbee DL, Barnhart TE, et al. Paraquat is excluded by the blood brain barrier in rhesus macaque: An in vivo pet study. Brain Res 2009; 1259:74-79.
21. Yasaka T, Okudaira K, Fujito H, Matsumoto J, Ohya I, Miyamoto Y. Further studies of lipid peroxidation in human paraquat poisoning. Arch Intern Med 1986; 146:681-685.
22. Gawarammana IB, Buckley NA. Medical management of paraquat ingestion. Br J Clin Pharmacol 2011; 72:745-757.
23. ó Proinsias K, Giedyk M, Gryko D. Vitamin B 12: chemical modifications. Chem Soc Rev 2013; 42:6605-6619.
24. Birch CS, Brasch NE, McCaddon A, Williams JH. A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 2009; 47:184-188.
25. McCaddon A. Vitamin B12 in neurology and ageing; clinical and genetic aspects. Biochimie 2013; 95:1066-1076.
26. Lalonde R, Barraud H, Ravey J, Guéant J-L, Bronowicki J-P, Strazielle C. Effects of a B-vitamin-deficient diet on exploratory activity, motor coordination, and spatial learning in young adult Balb/c mice. Brain Res 2008; 1188:122-131.
27. Al-Daghri NM, Rahman S, Sabico S, Yakout S, Wani K, Al-Attas OS, et al. Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients 2016; 8:460.
28. World Health Organization FaAOotUN. Vitamin and mineral requirements in human nutrition: vitamin A. 2nd ed. Geneva: World Health Organization  2004.279-300.
29. Madenci G, Bilen S, Arli B, Saka M, Ak F. Serum iron, vitamin B12 and folic acid levels in Parkinson’s disease. Neurochem Res 2012; 37:1436-1441.
30. Shen L. Associations between B vitamins and Parkinson’s disease. Nutrients 2015; 7:7197-7208.
31. Hosseinzadeh H, Moallem S, Moshiri M, Sarnavazi M, Etemad L. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice. Arzneimittelforschung 2012; 62:324-329.
32. Scalabrino G, Corsi M, Veber D, Buccellato F, Pravettoni G, Manfridi A, et al. Cobalamin (vitamin B12) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol 2002; 127:37-43.
33. Lee Y-J, Wang M-Y, Lin M-C, Lin P-T. Associations between vitamin B-12 status and oxidative stress and inflammation in diabetic vegetarians and omnivores. Nutrients 2016; 8:118.
34. Roy S, Sable P, Khaire A, Randhir K, Kale A, Joshi S. Effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on indices of brain oxidative stress in the offspring. Brain Dev 2014; 36:219-227.
35. Moreira ES, Brasch NE, Yun J. Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic Biol Med 2011; 51:876-883.
36. van de Lagemaat EE, De Groot LC, van den Heuvel EG. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients 2019; 11:482.
37. Hobbenaghi R, Javanbakht J, Hosseini E, Mohammadi S, Rajabian M, Moayeri P, et al. Neuropathological and neuroprotective features of vitamin B12 on the dorsal spinal ganglion of rats after the experimental crush of sciatic nerve: an experimental study (Retraction of vol 8, pg 123, 2013). Diagn Pathol 2016; 11.
38. Sakly G, Hellara O, Trabelsi A, Dogui M. Neuropathie périphérique réversible liée au déficit en vitamine B12. Neurophysiol Clin 2005; 35:149-153.
39. Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B 12 and omega-3 fatty acids on brain function. J Biomed Sci 2016; 23:1-7.
40. Gupta J, Sana QS. Potential benefits of methylcobalamin: A review. Austin J Pharmacol Ther 2015; 3:1076.
41. Attia HN, Maklad YA. Neuroprotective effects of coenzyme Q10 on paraquat-induced Parkinson’s disease in experimental animals. Behav Pharmacol 2018; 29:79-86.
42. Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth W, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol 2005; 62:91-95.
43. Somayajulu-Niţu M, Sandhu JK, Cohen J, Sikorska M, Sridhar T, Matei A, et al. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q 10. BMC neuroscience 2009; 10:1-12.
44. Fahim M, Shehab S, Nemmar A, Adem A, Dhanasekaran S, Hasan M. Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiol Res 2013; 62:313.
45. Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK. Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. J Neurosci 2007; 27:6914-6922.
46. Richter F, Gabby L, McDowell KA, Mulligan CK, De La Rosa K, Sioshansi PC, et al. Effects of decreased dopamine transporter levels on nigrostriatal neurons and paraquat/maneb toxicity in mice. Neurobiol Aging 2017; 51:54-66.
47. Majumdar S, Maiti A, Karmakar S, Sekhar Das A, Mukherjee S, Das D, et al. Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic‐induced toxicity. Environ Toxicol 2012; 27:351-363.
48. Li X, Matsumoto K, Murakami Y, Tezuka Y, Wu Y, Kadota S. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice. Pharmacol Biochem Behav 2005; 82:345-352.
49. Litteljohn D, Mangano EN, Hayley S. Cyclooxygenase‐2 deficiency modifies the neurochemical effects, motor impairment and co‐morbid anxiety provoked by paraquat administration in mice. Eur J Neurosci 2008; 28:707-716.
50. Ping C, Zhen C, Ang L, Xiao-Chu L, Xiao-Kang W, Chun-Jun Z, et al. Catalytic metalloporphyrin protects against paraquat neurotoxicity in vivo. Biomed Environ Sci 2008; 21:233-238.
51. Fernagut P-O, Hutson C, Fleming S, Tetreaut N, Salcedo J, Masliah E, et al. Behavioral and histopathological consequences of paraquat intoxication in mice: Effects of α‐synuclein over‐expression. Synapse 2007; 61:991-1001.
52. Brooks A, Chadwick C, Gelbard H, Cory-Slechta D, Federoff H. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 1999; 823:1-10.
53. Fernandes L, Santos A, Sampaio T, Sborgi S, Prediger R, Ferro M, et al. Exposure to paraquat associated with periodontal disease causes motor damage and neurochemical changes in rats. Hum Exp Toxicol 2021; 40:81-89.
54. Rudyk C, Dwyer Z, McNeill J, Salmaso N, Farmer K, Prowse N, et al. Chronic unpredictable stress influenced the behavioral but not the neurodegenerative impact of paraquat. Neurobiol Stress 2019; 11:100179.
55. Ishola IO, Akataobi OE, Alade AA, Adeyemi OO. Glimepiride prevents paraquat‐induced Parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Fundam Clin Pharmacol 2019; 33:277-285.
56. Litteljohn D, Mangano E, Shukla N, Hayley S. Interferon-γ deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat. Neuroscience 2009; 164:1894-1906.
57. Chanyachukul T, Yoovathaworn K, Thongsaard W, Chongthammakun S, Navasumrit P, Satayavivad J. Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo. Toxicol Lett 2004; 150:259-269.
58. Ait-Bali Y, Ba-M’hamed S, Bennis M. Prenatal Paraquat exposure induces neurobehavioral and cognitive changes in mice offspring. Environ Toxicol Pharmacol 2016; 48:53-62.
59. Pellegrino LJ, Altman J. Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats: a developmental study. J Comp Physiol Psychol 1979; 93:1.
60. Hamm RJ, Pike BR, O’DELL DM, Lyeth BG, Jenkins LW. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 1994; 11:187-196.
61. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol 2006; 5:949-960.
62. Akaike A, Tamura Y, Sato Y, Yokota T. Protective effects of a vitamin B12 analog, methylcobalamin, against glutamate cytotoxicity in cultured cortical neurons. Eur J Pharmacol 1993; 241:1-6.
63. Hung K-L, Wang C-C, Huang C-Y, Wang S-J. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol 2009; 602:230-237.
64. Tamaddonfard E, Farshid A, Samadi F, Eghdami K. Effect of vitamin B12 on functional recovery and histopathologic changes of tibial nerve-crushed rats. Drug Res (Stuttg) 2014; 64:470-475.
65. Taherian N, Vaezi G, Neamati A, Etemad L, Hojjati V, Gorji-Valokola M. Vitamin B12 and estradiol benzoate improve memory retrieval through activation of the hippocampal AKT, BDNF, and CREB proteins in a rat model of multiple sclerosis. Iran J Basic Med Sci 2021; 24:256.
66. Arora K, Sequeira JM, Hernández AI, Alarcon JM, Quadros EV. Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse. PloS one 2017; 12:e0177156.
67. Awuah EB. Effects Of Shmt1 Heterozygosity On Motor Coordination And Peripheral Neuropathy.  2019.
68. Jadavji NM, Emmerson JT, MacFarlane AJ, Willmore WG, Smith PD. B-vitamin and choline supplementation increases neuroplasticity and recovery after stroke. Neurobiol Dis 2017; 103:89-100.
69. Bendich A, Machlin L, Scandurra O, Burton G, Wayner D. The antioxidant role of vitamin C. Adv. in Free Radical Biology & Medicine 1986; 2:419-444.
70. Sauberlich HE. Pharmacology of vitamin C. Annu Rev Nutr 1994; 14:371-391.
71. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 1997; 100:2842-2848.
72. Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, et al. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci U S A 2001; 98:11720-11724.
73. Zhang N, Zhao W, Hu Z-J, Ge S-M, Huo Y, Liu L-X, et al. Protective effects and mechanisms of high-dose vitamin C on sepsis-associated cognitive impairment in rats. Sci Rep 2021; 11:1-10.
74. Ward MS, Lamb J, May JM, Harrison FE. Behavioral and monoamine changes following severe vitamin C deficiency. J Neurochem 2013; 124:363-375.
75. Colle D, Farina M. Oxidative stress in paraquat-induced damage to nervous tissues.  Toxicology: Elsevier; 2021. p. 69-78.
76. Sun Y, Zheng J, Xu Y, Zhang X. Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling. Hum Exp Toxicol 2018; 37:1161-1168.
77. Dinis-Oliveira R, Remiao F, Carmo H, Duarte J, Navarro AS, Bastos M, et al. Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 2006; 27:1110-1122.
78. Peng J, Stevenson FF, Oo ML, Andersen JK. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med 2009; 46:312-320.
79. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 2007; 25:392-400.
80. Hou L, Sun F, Sun W, Zhang L, Wang Q. Lesion of the locus coeruleus damages learning and memory performance in paraquat and maneb-induced mouse Parkinson’s disease model. Neuroscience 2019; 419:129-140.
81. Kang MJ, Gil SJ, Koh HC. Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett 2009; 188:148-152.
82. Zhao X, Wang R, Xiong J, Yan D, Li A, Wang S, et al. JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2. Toxicol Lett 2017; 277:32-40.
83. Keeney PM, Xie J, Capaldi RA, Bennett JP. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006; 26:5256-5264.
84. Gazewood JD, Richards DR, Clebak KT. Parkinson disease: an update. Am Fam Physician 2013; 87:267-273.
85. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016.
86. Suarez-Moreira E, Yun J, Birch CS, Williams JH, McCaddon A, Brasch NE. Vitamin B12 and redox homeostasis: cob (II) alamin reacts with superoxide at rates approaching superoxide dismutase (SOD). J Am Chem Soc 2009; 131:15078-15079.
87. Wheatley C. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med Hypotheses 2006; 67:124-142.
88. Moshiri M, Hosseiniyan SM, Moallem SA, Hadizadeh F, Jafarian AH, Ghadiri A, et al. The effects of vitamin B12 on the brain damages caused by methamphetamine in mice. Iran J Basic Med Sci 2018; 21:434.
89. Khastar H, Garmabi B, Mehrjerdi FZ, Rahimi MT, Shamsaei N, Ali A-H, et al. Cyanocobalamin improves memory impairment via inhibition of necrosis and apoptosis of hippocampal cell death after transient global ischemia/reperfusion. Iran J Basic Med Sci 2021; 24:160.
90. Vandana S, Ram S, Ilavazhagan M, Kumar GD, Banerjee PK. Comparative cytoprotective activity of vitamin C, E and beta-carotene against chromium induced oxidative stress in murine macrophages. Biomed Pharmacother 2006; 60:71-76.
91. Dinis-Oliveira R, Duarte J, Sanchez-Navarro A, Remiao F, Bastos M, Carvalho F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 2008; 38:13-71.
92. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. Advances in Research on Neurodegeneration 2000:143-151.
93. Ding W, Lin H, Hong X, Ji D, Wu F. Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease. Toxicology 2020; 436:152437.
94. Tian T, Zhang B, Wang K, Zhang B, Huang M. Protective effects of taurine on neurons and microglia in Parkinson’s disease-like mouse model induced by paraquat. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2020; 38:801-808.
95. Li Q, Xiao H, Shao Y, Chang X, Zhang Y, Zhou Z. Paraquat increases Interleukin-1β in hippocampal dentate gyrus to impair hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf 2020; 200:110733.
96. Ishola IO, Akinyede A, Adeluwa T, Micah C. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis 2018; 33:1493-1500.
97. Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood) 2015; 240:1387-1395.
98. Manzanares W, Hardy G. Vitamin B12: the forgotten micronutrient for critical care. Curr Opin Clin Nutr Metab Care 2010; 13:662-668.
99. Volkov I, Rudoy I, Press Y. Successful treatment of chronic erythema nodosum with vitamin B12. J Am Board Fam Med 2005; 18:567-569.
100. Miller JW. vitamin B (12) deficiency, tumor necrosis factor-(alpha), and epidermal growth factor: A novel function for Vitamin B (12)? Nutr Rev 2002; 60:142.
101. Yamashiki M, Nishimura A, Kosaka Y. Effects of methylcobalamin (vitamin B12) on in vitro cytokine production of peripheral blood mononuclear cells. J Clin Lab Immunol 1992; 37:173-182.
102. Scalabrino G, Carpo M, Bamonti F, Pizzinelli S, D’Avino C, Bresolin N, et al. High tumor necrosis factor-alpha [corrected] levels in cerebrospinal fluid of cobalamin-deficient patients. Ann Neurol 2004; 56:886-890.
103. Karimi A, Mousavi M, Parivar K, Nabiuni M, Haghighi S, Imani S, et al. Combined effect of honey bee venom and vitamin B12 on L. rats with experimental allergic encephalomyelitis induced by guinea pig spinal cord homogenates. Iran J Pharm Res 2011; 11:671-678.
104. Ma L, Chen Y, Song X, Wang L, Zhao B, Yang Z, et al. Vitamin C attenuates hemorrhagic hypotension induced epithelial–dendritic cell transformation in rat intestines by maintaining GSK-3β activity and E-cadherin expression. Shock 2016; 45:55-64.
105. Mikirova N, Scimeca RC. Intravenous high-dose ascorbic acid reduces the expression of inflammatory markers in peripheral mononuclear cells of subjects with metabolic syndrome. J Transl Sci 2016; 2:188-195.
106. Leelarungrayub J, Laskin JJ, Bloomer RJ, Pinkaew D. Consumption of star fruit juice on pro-inflammatory markers and walking distance in the community dwelling elderly. Arch Gerontol Geriatr 2016; 64:6-12.
107. Kim S-M, Lim S-M, Yoo J-A, Woo M-J, Cho K-H. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food Funct 2015; 6:3604-3612.
108. Ellulu MS, Rahmat A, Patimah I, Khaza’ai H, Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther 2015; 9:3405-3412.
109. Ranjbar A, Asl SS, Firozian F, Dartoti HH, Seyedabadi S, Azandariani MT, et al. Role of cerium oxide nanoparticles in a paraquat-induced model of oxidative stress: emergence of neuroprotective results in the brain. J Mol Neurosci 2018; 66:420-427.
110. Li H-f, Zhao S-x, Xing B-p, Sun M-l. Ulinastatin suppresses endoplasmic reticulum stress and apoptosis in the hippocampus of rats with acute paraquat poisoning. Neural Regen Res 2015; 10:467.
111. Li K, Cheng X, Jiang J, Wang J, Xie J, Hu X, et al. The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem Toxicol 2017; 106:356-366.
112. Kumar A, Ganini D, Mason RP. Role of cytochrome c in alpha-synuclein radical formation: implications of alpha-synuclein in neuronal death in Maneb- and paraquat-induced model of Parkinson’s disease. Mol Neurodegener 2016; 11:70.
113. de Queiroz KB, Cavalcante-Silva V, Lopes FL, Rocha GA, D’Almeida V, Coimbra RS. Vitamin B 12 is neuroprotective in experimental pneumococcal meningitis through modulation of hippocampal DNA methylation. J Neuroinflammation 2020; 17:1-12.
114. Lv FH, Gao JZ, Teng QL, Zhang JY. Effect of folic acid and vitamin B12 on the expression of PPARγ, caspase‑3 and caspase‑8 mRNA in the abdominal aortas of rats with hyperlipidemia. Exp Ther Med 2013; 6:184-188.
115. Naseer MI, Ullah I, Ullah N, Lee HY, Cheon EW, Chung J, et al. Neuroprotective effect of vitamin C against PTZ induced apoptotic neurodegeneration in adult rat brain. Pak J Pharm Sci 2011; 24:263-268.