The effects of ginger and its constituents in the prevention of metabolic syndrome: A review

Document Type : Review Article


1 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Metabolic syndrome is a multifactorial disorder characterized by hyperglycemia, hyperlipidemia, obesity, and hypertension risk factors. Moreover, metabolic syndrome is the most ordinary risk factor for cardiovascular disease (CVD). Numerous chemical drugs are being synthesized to heal metabolic risk factors. Still, due to their abundant side effects, herbal medicines have a vital role in the treatment of these abnormalities. Ginger (Zingiber officinale Roscoe, Zingiberaceae) plant has been traditionally used in medicine to treat disorders, including CVD. The unique ginger properties are attributed to the presence of [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol, which through different mechanisms can be beneficial in metabolic syndrome. Ginger has a beneficial role in metabolic syndrome treatment due to its hypotensive, anti‐obesity, hypoglycemic, and hypolipidemic effects. It can significantly reduce atherosclerotic lesion areas, VLDL and LDL cholesterol levels, and elevate adenosine deaminase activity in platelet and lymphocytes. Also, it promotes ATP/ADP hydrolysis. In the current article review, the critical properties of ginger and its constituents’ effects on the metabolic syndrome with a special focus on different molecular and cellular mechanisms have been discussed. This article also suggests that ginger may be introduced as a therapeutic or preventive agent against metabolic syndrome after randomized clinical trials.


1. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, et al. The metabolic syndrome. Endocr Rev 2008; 29:777-822.
2. Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome; a new worldwide definition. Lancet 2005; 366:1059-1062.
3. Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444:881-887.
4. Halpern A, Mancini MC, Magalhães MEC, Fisberg M, Radominski R, Bertolami MC, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: From diagnosis to treatment. Diabetol Metab Syndr 2010; 2:55.
5. Fumeron F, Lamri A, Khalil CA, Jaziri R, Porchay-Baldérelli I, Lantieri O, et al. Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: Results from a French prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2011; 34:813-817.
6. Schillaci G, Pirro M, Vaudo G, Gemelli F, Marchesi S, Porcellati C, et al. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol 2004; 43:1817-1822.
7. Mikhail N. The metabolic syndrome: insulin resistance. Curr Hypertens Rep 2009; 11:156.
8. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28:629-636.
9. Lakka H-M, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The Metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288:2709-2716.
10. Tachjian A, Maria V, Jahangir A. Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol 2010; 55:515-525.
11. Razavi BM, Hosseinzadeh H. Saffron: A promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97:1679-1685.
12. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran J Basic Med Sci 2016; 19:1258-1270.
13. Hosseini A, Hosseinzadeh H. A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J Endocrinol Invest  2015; 38:1147-1157.
14. Akaberi M, Hosseinzadeh H. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016; 30:540-556.
15. Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phytother Res 2017; 31:819-837.
16. Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review.  Naunyn-Schmiedeb Arch Pharmacol 2016; 389:931-949.
17. Dehghani S, Mehri S, Hosseinzadeh H. The effects of Crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci 2019; 22:460-468.
18. Macit MS, Sözlü S, Kocaadam B, Acar-Tek N. Evaluation of ginger (Zingiber Officinale Roscoe) on energy metabolism and obesity: systematic review and meta-analysis. Food Rev Int 2019; 35:685-706.
19. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol 2008; 46:409-420.
20. Kaplan, H. Growing and plant characteristics of ginger (Zingiber officinale Roscoe). DERIM. 2014; 22: 1–9.
21. Yang M, Liu C, Jiang J, Zuo G, Lin X, Yamahara J, et al. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats. BMC Complement Altern Med 2014; 14:174.
22. Suthisut D, Fields PG, Chandrapatya A. Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J Econ Entomol 2011; 104:1445-1454.
23. Torkzadeh-Mahani S, Nasri S, Esmaeili-Mahani S. Ginger (Zingiber officinale Roscoe) prevents morphine-induced addictive behaviors in conditioned place preference test in rats. Addiction & health 2014; 6:65-72.
24. Funk JL, Frye JB, Oyarzo JN, Chen J, Zhang H, Timmermann BN. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition 2016; 4:123-131.
25. Rahimlou M, Yari Z, Hekmatdoost A, Alavian SM, Keshavarz SA. Ginger supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Hepat Mon 2016; 16. e34897.
26. Shirooye P, Hashem-Dabaghian F, Hamzeloo-Moghadam M, Afrakhteh M, Bioos S, Mokaberinejad R. A clinical comparative study of oral and topical ginger on severity and duration of primary dysmenorrhea. Res J Pharmacogn 2017; 4:23-32.
27. Pongrojpaw D, Somprasit C, Chanthasenanont A. A randomized comparison of ginger and dimenhydrinate in the treatment of nausea and vomiting in pregnancy. J Med Assoc Thai 2007; 90:1703-1708.
28.Ryan JL, Heckler CE, Roscoe JA, Dakhil SR, Kirshner J, Flynn PJ, et al. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: a URCC CCOP study of 576 patients. Support Care Cancer 2012; 20:1479-1489.
29. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative anti-oxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 2010; 127:515-520.
30. Jiang H, Xie Z, Koo HJ, McLaughlin SP, Timmermann BN, Gang DR. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc). Phytochemistry 2006; 67:1673-1685.
31. Morakinyo A, Oludare G, Aderinto O, Tasdup A. Anti-oxidant and free radical scavenging activities of aqueous and ethanol extracts of Zingiber officinale. Biol Med 2011; 3: 25-30.
32. Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann N Y Acad Sci 2017; 1398:83-98.
33.  Zhu J, Chen H, Song Z, Wang X, Sun Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018; 2018:5692962.
34. Hadaegh F, Ghasemi A, Padyab M, Tohidi M, Azizi F. The metabolic syndrome and incident diabetes: Assessment of alternative definitions of the metabolic syndrome in an Iranian urban population. Diabetes Res Clin Pract 2008; 80:328-334.
35. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 2008; 371:1927-1935.
36. Taskinen M-R. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46:733-749.
37. Sardu C, De Lucia C, Wallner M, Santulli G. Diabetes mellitus and its cardiovascular complications: new insights into an old disease. J Diabetes Res 2019; 2019: 1905194.
38. Shibru T, Aga F, Boka A. Prevalence of diabetic retinopathy and associated factors among type 2 diabetes patients at tikur anbessa hospital ethiopia. J Diabetes Metab  2019; 10:1-7.
39. Khoury CC, Chen S, Ziyadeh FN. Pathophysiology of diabetic nephropathy.  chronic renal disease: Elsevier; 2020; 279-296.
40. Lipscombe LL, Hux JE. Trends in Diabetes Prevalence, Incidence, and Mortality in Ontario, Canada 1995-2005: A Population-Based Study. Lancet 2007; 369:750-756.
41. Li Y, Tran VH, Kota BP, Nammi S, Duke CC, Roufogalis BD. Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic Clin Pharmacol Toxicol 2014; 115:209-215.
42. Shalaby MA, Saifan HY. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats. J Intercult Eethnopharmacol 2014; 3:144-153
43. Samad MB, Mohsin M, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic beta-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Complement Altern Med 2017; 17:395.
44. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet 2006; 368:1696-1705.
45. Rameshrad M, Razavi BM, Lalau J-D, De Broe ME, Hosseinzadeh H. An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning. Iran J Basic Med Sci 2020; 23:556-568.
46. Lee JO, Kim N, Lee HJ, Moon JW, Lee SK, Kim SJ, et al. [6]-Gingerol affects glucose metabolism by dual regulation via the AMPKalpha2-Mediated AS160-Rab5 pathway and AMPK-mediated insulin sensitizing effects. J Cell Biochem 2015; 116:1401-1410.
47. Brings S, Fleming T, Freichel M, Muckenthaler MU, Herzig S, Nawroth PP. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int J Mol Sci 2017; 18:984.
48. Chen J-H, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutrition and Metabolism 2018; 15:72-72.
49. Sampath C, Rashid MR, Sang S, Ahmedna M. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem 2017; 226:79-88.
50. Wei C-K, Tsai Y-H, Korinek M, Hung P-H, El-Shazly M, Cheng Y-B, et al. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci 2017; 18:168.
51. Islam MS, Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. J Med Food 2008; 11:152-159.
52. Al-Attar AM, Zari TA. Modulatory effects of ginger and clove oils on physiological responses in streptozotocin-induced diabetic rats. Int J Pharmacol 2007; 3:34-40.
53. Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed Pharmacother 2018; 106:381-389.
54. Mata-Bermudez A, Izquierdo T, de Los Monteros-Zuniga E, Coen A, Godinez-Chaparro B. Antiallodynic effect induced by [6]-gingerol in neuropathic rats is mediated by activation of the serotoninergic system and the nitric oxide-cyclic guanosine monophosphate-adenosine triphosphate-sensitive K(+) channel pathway. Phytother Res 2018; 32:2520-2530.
55. Afshari AT, Shirpoor A, Farshid A, Saadatian R, Rasmi Y, Saboory E, et al. The effect of ginger on diabetic nephropathy, plasma anti-oxidant capacity and lipid peroxidation in rats. Food Chem 2007; 101:148-153.
56. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Retinopathy in diabetes. Diabetes care 2004; 27: 84-87.
57. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al. A review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules 2017; 22:1645.
58. Tzeng TF, Liou SS, Tzeng YC, Liu IM. Zerumbone, a phytochemical of subtropical ginger, protects against hyperglycemia-induced retinal damage in experimental diabetic rats. Nutrients 2016; 8: 449.
59. Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 2015; 12:165-170.
60. Makhdoomi Arzati M, Mohammadzadeh Honarvar N, Saedisomeolia A, Anvari S, Effatpanah M, Makhdoomi Arzati R, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab 2017; 15:e57927.
61. Mozaffari-Khosravi H, Talaei B, Jalali B-A, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complement Ther Med 2014; 22:9-16.
62. Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr 2014; 65:515-520.
63. Brunzell JD, Ayyobi AF. Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. Am  J Med 2003; 115:24-28.
64. Mollazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine 2019; 53:43-52.
65. Arzati MM, Honarvar NM, Saedisomeolia A, Anvari S, Effatpanah M, Arzati RM, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab 2017; 15:e57927
66. de Las Heras N, Valero-Muñoz M, Martín-Fernández B, Ballesteros S, López-Farré A, Ruiz-Roso B, et al. Molecular factors involved in the hypolipidemic-and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Applied Physiology, Nutrition, and Metabolism 2017; 42:209-215.
67. Fatima A, Niaz K, Suhail B, Murad S. Ginger pasted-powder prevents dyslipidemia and body weight. Pakistan J. Medical Health Sci. 2018; 12:974-976.
68. Bhandari U, Sharma JN, Zafar R. The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits. J Ethnopharmacol 1998; 61:167-171.
69. Li J, Wang S, Yao L, Ma P, Chen Z, Han TL, et al. 6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol Appl Pharmacol 2019; 362:125-135.
70. Kim H-J, Kim B, Mun E-G, Jeong S-Y, Cha Y-S. The anti-oxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice. Nut Res Prac 2018; 12:503-511.
71. Subbaiah GV, Mallikarjuna K, Shanmugam B, Ravi S, Taj PU, Reddy KS. Ginger treatment ameliorates alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers in rats. Pharmacogn Mag 2017; 13: 69-75.
72. Akinyemi AJ, Ademiluyi AO, Oboh G. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet. J Med Food 2014; 17:317-323.
73. Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M. Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J Nutr 2000; 130:1124-1131.
74. Matsuda A, Wang Z, Takahashi S, Tokuda T, Miura N, Hasegawa J. Upregulation of mRNA of retinoid binding protein and fatty acid binding protein by cholesterol enriched-diet and effect of ginger on lipid metabolism. Life Sci 2009; 84:903-907.
75. Li X, Guo J, Liang N, Jiang X, Song Y, Ou S, et al. 6-Gingerol regulates hepatic cholesterol metabolism by up-regulation of LDLR and cholesterol efflux-related genes in HepG2 cells. Front Pharmacol 2018; 9:159  doi: 10.3389/fphar.
76. Li C, Zhou L. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/beta-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol In vitro 2015; 30:394-401.
77. Al-Noory AS, Amreen AN, Hymoor S. Antihyperlipidemic effects of ginger extracts in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in (rats). Pharmacognosy Res 2013; 5:157-161.
78. Nayebifar S, Afzalpour ME, Kazemi T, Eivary SH, Mogharnasi M. The effect of a 10-week high-intensity interval training and ginger consumption on inflammatory indices contributing to atherosclerosis in overweight women. J Res Med Sci 2016; 21:116.
79. Greenfield DM, Snowden JA. Cardiovascular diseases and metabolic syndrome.  The EBMT Handbook: Springer; 2019; 415-420.
80. Maksimovic M, Vlajinac H, Radak D, Marinkovic J, Maksimovic J, Jorga J. Association of overweight and obesity with cardiovascular risk factors in patients with atherosclerotic diseases. J Med Biochem 2019; 39: 215-223.
81. Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1997; 96:3248-3250.
82. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15:288.
83. Kim GW, Lin JE, Blomain ES, Waldman SA. Antiobesity pharmacotherapy: New drugs and emerging targets. Clin Pharmacol Ther 2014; 95:53-66.
84. Balogun FO, AdeyeOluwa ET, Ashafa AOT. Pharmacological potentials of ginger.  Studies on Ginger: IntechOpen; 2019.
85. Panda VS, Shah T. A herbal premix containing Macrotyloma uniflorum, ginger and whey curtails obesity in high fat diet fed rats by a novel mechanism. Appl Physiol Nutr Metab 2020; 45: 25-35.
86. Park S-H, Jung S-J, Choi E-K, Ha K-C, Baek H-I, Park Y-K, et al. The effects of steamed ginger ethanolic extract on weight and body fat loss: a randomized, double-blind, placebo-controlled clinical trial. Food Sci Biotechnol 2020; 29:265-273.
87. Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition 2017; 5:18-28.
88. Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Ann N Y Acad Sci 2017; 1398:83-98.
89. Suk S, Kwon GT, Lee E, Jang WJ, Yang H, Kim JH, et al. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol Nutr Food Res 2017; 61 doi: 10.1002/mnfr.201700139. 
90. Perreault M, Erbe DV, Tobin JF. PPARδ Agonism for the treatment of obesity and associated disorders: challenges and opportunities. PPAR Res 2008; 2008:125387.
91. Misawa K, Hashizume K, Yamamoto M, Minegishi Y, Hase T, Shimotoyodome A. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor delta pathway. J Nutr Biochem 2015; 26:1058-1067.
92. Mahmoud RH, Elnour WA. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur Rev Med Pharmacol Sci 2013; 17:75-83.
93. Ilkhanizadeh B, Shirpoor A, Nemati S, Rasmi Y. Protective effects of ginger (Zingiber officinale) extract against diabetes-induced heart abnormality in rats. Diabetes Metab J 2016; 40:46-53.
94. Attari VE, Mahluji S, Jafarabadi MA, Ostadrahimi A. Effects of supplementation with ginger (Zingiber officinale Roscoe) on serum glucose, lipid profile and oxidative stress in obese women: a randomized, placebo-controlled clinical trial. J  Pharm Sci 2015; 21:184-191.
95. Park S-H, Jung S-J, Choi E-K, Ha K-C, Baek H-I, Park Y-K, et al. The effects of steamed ginger ethanolic extract on weight and body fat loss: a randomized, double-blind, placebo-controlled clinical trial. Food Sci Biotechnol 2020; 29:265-273.
96. Ebrahimzadeh Attari V, Malek Mahdavi A, Javadivala Z, Mahluji S, Zununi Vahed S, Ostadrahimi A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother Res 2018; 32:577-585.
97. Maharlouei N, Tabrizi R, Lankarani KB, Rezaianzadeh A, Akbari M, Kolahdooz F, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 59:1753-1766.
98. Taghizadeh M, Farzin N, Taheri S, Mahlouji M, Akbari H, Karamali F, et al. The effect of dietary supplements containing green tea, capsaicin and ginger extracts on weight loss and metabolic profiles in overweight women: A randomized double-blind placebo-controlled clinical trial. Ann Nutr Metab 2017; 70:277-285.
99. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, et al. Impact of hypertension on cognitive function: A scientific statement from the American Heart Association. Hypertension 2016; 68: 67-94.
100. Mayosi BM, Cupido B, Lawrenson J. Cardiovascular diseases.  in hunter’s tropical medicine and emerging infectious diseases, Eds: Magill, A.J., Ryan, E.T., Solomon, T., Hill, D.R.: Elsevier; 2020; 8-15.
101. Barsky AJ, Saintfort R, Rogers MP, Borus JF. Nonspecific medication side effects and the nocebo phenomenon. JAMA 2002; 287:622-627.
102. Elkhishin IA, Awwad IA. A study of the cardiovascular toxic effects of Zingiber officinale (ginger) in adult male albino rats and its possible mechanisms of action.MJFCT 2009; 17:109-127.
103. Ghayur MN, Gilani AH. Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. J Cardiovas Pharmacol 2005; 45:74-80.
104. Wen J, Zhang L, Wang J, Wang J, Wang L, Wang R, et al. Therapeutic effects of higenamine combined with [6]‐gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function. J Cell Mol Med 2020; 24:4036-4050.
105. Lee Y-J, Jang Y-N, Han Y-M, Kim H-M, Seo HS. 6-Gingerol Normalizes the Expression of Biomarkers Related to Hypertension via PPARδ in HUVECs, HEK293, and Differentiated 3T3-L1 Cells. PPAR Res 2018; 2018:6485064.
106. Akinyemi AJ, Thomé GR, Morsch VM, Bottari NB, Baldissarelli J, de Oliveira LS, et al. Effect of ginger and turmeric rhizomes on inflammatory cytokines levels and enzyme activities of cholinergic and purinergic systems in hypertensive rats. Planta Med 2016; 82:612-620.
107. Wang Y, Yu H, Zhang X, Feng Q, Guo X, Li S, et al. Evaluation of daily ginger consumption for the prevention of chronic diseases in adults: A cross-sectional study. Nutrition 2017; 36:79-84.
108. Nammi S, Sreemantula S, Roufogalis BD. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 2009; 104:366-373.
109. Hussain N, Hashmi AS, Wasim M, Akhtar T, Saeed S, Ahmad T. Synergistic potential of Zingiber officinale and Curcuma longa to ameliorate diabetic-dyslipidemia. Pak J Pharm Sci 2018; 31:491-498.
110. Abdulrazak A, Tanko Y, Mohammed A, Mohammed KA, Sada NM, Dikko AA. Effects of clove and fermented ginger on blood glucose, leptin, insulin and insulin receptor levels in high fat dietinduced type 2 diabetic rabbits. Niger J Physiol Sci 2018; 33:89-93.
111. Iroaganachi M, Eleazu CO , Okafor PN, Nwaohu N. Effect of unripe plantain (musa paradisiaca) and ginger (Zingiber officinale) on blood glucose, body weight and feed intake of streptozotocin-induced diabetic rats. Open Biochem J 2015; 9:1-6.
112. Akhani S, Vishwakarma S, Goyal R. Antidiabetic activity of zingiber officinal roscoe in streptozotocin-induced non-insulin dependent diabetic rats. Indian J Pharm sci 2005; 67:553.
113. Jafri SA, Abass S, Qasim M. Hypoglycemic effect of ginger (Zingiber officinale) in alloxan induced diabetic rats (Rattus norvagicus). Pak Vet J 2011; 31:160-162.
114. Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res 2006; 20:764-772.
115. Chakraborty D, Mukherjee A, Sikdar S, Paul A, Ghosh S, Khuda-Bukhsh AR. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett 2012; 210:34-43.
116. Iranloye BO, Arikawe AP, Rotimi G, Sogbade AO. Anti-diabetic and anti-oxidant effects of Zingiber officinale on alloxan-induced and insulin-resistant diabetic male rats. Niger J Physiol Sci 2011; 26:89-96.
117. Mohammadi H, Avandi SM. Effect of eight weeks resistance training with ginger supplementation on malondialdehyde and body compostion index in type 2 diabetes patients. koomesh 2019; 21:73-82.
118. Noipha K, Ninla-Aesong P. Antidiabetic activity of Zingiber officinale Roscoe rhizome extract: An In vitro study. Hayati J Biosci 2018; 25:160-168.
119. Shao Y, Yu Y, Li C, Yu J, Zong R, Pei C. Synergistic effect of quercetin and 6-gingerol treatment in streptozotocin induced type 2 diabetic rats and poloxamer P-407 induced hyperlipidemia. RSC Advances 2016; 6:12235-12242.
120. Al-Qudah MM, Haddad MA, EL-Qudah JM. The effects of aqueous ginger extract on pancreas histology and on blood glucose in normal and alloxan monohydrate-induced diabetic rats. Biomed Res 2016; 7:350-356.
121. Kim S, Lee M-S, Jung S, Son H-Y, Park S, Kang B, et al. Ginger extract ameliorates obesity and inflammation via regulating MicroRNA-21/132 expression and AMPK activation in white adipose tissue. Nutrients 2018; 10:1567.
122. Bin-Meferij MM, Shati AA, Eid RA, El-Kott AF. Anti-obesity and anti-hepatosteatosis effects of dietary Zingiber officinale extract in male obese rats. Int J Pharmacol 2017; 13:620-627.
123. Ebrahimzadeh Attari V, Asghari Jafarabadi M, Zemestani M, Ostadrahimi A. Effect of zingiber officinale supplementation on obesity management with respect to the uncoupling protein 1 -3826A>G and β3-adrenergic receptor Trp64Arg polymorphism. Phytother Res 2015; 29:1032-1039.
124. Oh S, Lee M-S, Jung S, Kim S, Park H, Park S, et al. Ginger extract increases muscle mitochondrial biogenesis and serum HDL-cholesterol level in high-fat diet-fed rats. J Funct  Foods 2017; 29:193-200.
125. Ochiai M, Takeuchi T, Nozaki T, Ishihara Ko, Matsuo T. Kaempferia parviflora ethanol extract, a peroxisome proliferator‐activated receptor γ ligand‐binding agonist, improves glucose tolerance and suppresses fat accumulation in diabetic NSY mice. J Food Sci 2019; 84:339-348.
126. Ismail NS. Protective effects of aqueous extracts of cinnamon and ginger herbs against obesity and diabetes in obese diabetic rat. World J Dairy Food Sci 2014; 9:145-153.
127. Ghayur MN, Gilani AH. Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. J Cardiovasc Pharmacol 2005; 45:74-80.
128. Ghayur MN, Gilani AH, Afridi MB, Houghton PJ. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways. Vascul Pharmacol 2005; 43:234-241.