Chromone derivatives suppress neuroinflammation and improve mitochondrial function in the sporadic form of Alzheimer’s disease under experimental conditions

Document Type : Original Article

Authors

1 Department of Pharmacology with Course of Clinical Pharmacology Pyatigorsk Medical Pharmaceutical Institute - A Branch of VolgGMU of the Ministry of Health of Russia, Pyatigorsk, Kalinin Ave., 11, 357532, Russia

2 Department of Analytical Chemistry, Pyatigorsk Medical Pharmaceutical Institute - A Branch of VolgGMU of the Ministry of Health of Russia, Pyatigorsk, Kalinin Ave., 11, 357532, Russia

3 Department of Organic Chemistry, Pyatigorsk Medical Pharmaceutical Institute - A Branch of VolgGMU of the Ministry of Health of Russia, Pyatigorsk, Kalinin Ave., 11, 357532, Russia

10.22038/ijbms.2022.65377.14387

Abstract

Objective(s): The study aims to estimate the neuroprotective effect of chromone derivatives in the sporadic form of Alzheimer’s disease in the context of the relationship between changes in mitochondrial function and neuroinflammation.
Materials and Methods: Alzheimer’s disease was modeled by injecting Aβ 1-42 fragments into the CA1 part of the hippocampus of animals. The test compounds and memantine were administered orally for 60 days from the moment the pathology was reproduced. The change in cognitive deficit in rats was assessed in the Y-maze test. In the hippocampus of rats, intensity of cellular respiration, activity of mitochondrial enzymes (citrate synthase, aconitase, cytochrome-c-oxidase, and succinate dehydrogenase), concentrations of IL - 6; IL -1β; TNF -α; IL – 10, and cardiolipin were determined.
Results: Of the 18 substances, only C3AACP6 and C3AACP7 compounds contributed to the recovery of aerobic metabolism, increased activity of mitochondrial enzymes, and reduced neuroinflammation in the hippocampus of rats. Furthermore, administration of these substances reduced the manifestation of cognitive deficit in animals with Alzheimer’s disease to a degree comparable with memantine. Moreover, in terms of the effect on changes in the activity of mitochondrial enzymes and aerobic metabolism, these substances significantly exceeded memantine.
Conclusion: The study showed that from the analyzed chromone derivatives, two compounds C3AACP6 and C3AACP7 could have a neuroprotective effect in Alzheimer’s disease, which is realized through the axis: recovery of mitochondrial function, decrease extramitochondrial cardiolipin, decrease neuroinflammation, neuroprotection.

Keywords


1.    Serrano-Pozo A, Growdon JH. Is Alzheimer’s Disease Risk Modifiable? J Alzheimers Dis. 2019;67:795-819. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18:700-789. 
2.    Atri A, Molinuevo JL, Lemming O, Wirth Y, Pulte I, Wilkinson D. Memantine in patients with Alzheimer’s disease receiving donepezil: new analyzes of efficacy and safety for combination therapy. Alzheimers Res Ther. 2013;5:6. 
3.    Devanand DP, Pelton GH, D’Antonio K, Ciarleglio A, Scodes J, Andrews H, et al. Donepezil Treatment in Patients With Depression and Cognitive Impairment on Stable Antidepressant Treatment: A Randomized Controlled Trial. Am J Geriatr Psychiatry. 2018;26:1050-1060. 
4.    Winblad B, Jones RW, Wirth Y, Stöffler A, Möbius HJ. Memantine in moderate to severe Alzheimer’s disease: a meta-analysis of randomized clinical trials. Dement Geriatr Cogn Disord. 2007;24(1):20-7. doi: 10.1159/000102568.
5.    Tricco AC, Ashoor HM, Soobiah C, Rios P, Veroniki AA, Hamid JS, et al. Comparative Effectiveness and Safety of Cognitive Enhancers for Treating Alzheimer’s Disease: Systematic Review and Network Metaanalysis. J Am Geriatr Soc. 2018;66:170-178. 
6.    Pleen J, Townley R. Alzheimer’s disease clinical trial update 2019-2021. J Neurol. 2022;269:1038-1051. 
7.    Chen GF, Xu TH, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38:1205-1235. 
8.    Tatulian S.A. Challenges and hopes for Alzheimer’s disease. Drug Disc Today. 2022;27:1027-1043
9.    Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Aging Res Rev. 2021;68:101339. 
10.    Kumar N, Kumar V, Anand P, Kumar V, Ranjan Dwivedi A, Kumar V. Advancements in the development of multi-target directed ligands for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2022;61:116742.
11.    Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des. 2021;98:943-953. 
12.    Pozdnyakov DI, Voronkov AV, Rukovitsyna VM. Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia. Iran J Basic Med Sci. 2020;23:1172-1183. 
13.    Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M,et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi: 10.1371/journal.pbio.3000410. 
14.    RukovitsinaV, OganesyanE, Pozdnyakov D. Synthesis and study of the effect of 3-substituted chromone derivatives onchanges in the activity of mitochondrial complex III under experimental cerebral ischemia. J Res Pharm. 2022; 26: 408-420. 
15.    Azadfar P, Noormohammadi Z, Noroozian M, Eidi A, Mortazavi P. Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep. 2020;47:5737-5745. 
16.    Paxinos, G., and C. Watson. “The rat brain in stereotaxic coordinates. Amsterdam.” The Netherlands: Elsevier Inc (2007).
17.    Rosales-Corral SA, Lopez-Armas G, Cruz-Ramos J. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin. Int J Alzheimers Dis. 2012;2012:459806.
18.    Amani M, Zolghadrnasab M, Salari AA. NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav. 2019;202:52-61. 
19.    Voronkov AV, Pozdnyakov DI, Nigaryan SA, Khouri EI, Miroshnichenko KA, Sosnovskaya AV, Olokhova EA Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology. 2019;7:20-31. 
20.    Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria.The Bioch. J. 1969; 114(3):597
21.    Ternette N, Yang M, Laroyia M. Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep. 2013;3:689 - 700. 
22.    Smolina N, Bruton J, Kostareva A, Sejersen T. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness. Methods Mol Biol. 2017;1601:79-87. 
23.    Panov AV, Dikalov SI. Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. Oxid Med Cell Longev. 2020;2020:1323028. doi: 10.1155/2020/1323028..
24.    Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25:59-70.
25.    Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr Neuropharmacol. 2020;18:1106-1125. 
26.    Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev. 2019;39:1053-1090.
27.    Albornoz EA, Woodruff TM, Gordon R. Inflammasomes in CNS Diseases. Exp Suppl. 2018;108:41-60. doi:10.1007/978-3-319-89390-7_3
28.    Sánchez-Sarasúa S, Fernández-Pérez I, Espinosa-Fernández V, Sánchez-Pérez AM, Ledesma JC. Can We Treat Neuroinflammation in Alzheimer’s Disease? Int J Mol Sci. 2020;21:8751. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. apoptosis. 2021;26(3-4):152-162. van Horssen J, van Schaik P, Witte M. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders?. Neurosci Lett. 2019;710:132931. Pizzuto M, Pelegrin P. Cardiolipin in Immune Signaling and Cell Death. Trends Cell Biol. 2020;30:892-903. Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants (Basel). 2020;9:647. Syed YY. Sodium Oligomannate: First Approval. Drugs. 2020;80:441-444. 
29.    Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab. 2021;32:224-237. 
30.    Pointer CB, Klegeris A. Cardiolipin in Central Nervous System Physiology and Pathology. Cell Mol Neurobiol. 2017;37:1161-1172. 
31.    Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349-3360. Wenzel TJ, Ranger AL, McRae SA, Klegeris A. Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. J Neuroimmunol. 2021;353:577496. 
32.    Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. Biomed Res Int. 2018;2018:3087475.