Saroglitazar ameliorates monosodium glutamate-induced obesity and associated inflammation in Wistar rats: Plausible role of NLRP3 inflammasome and NF- κB

Document Type : Original Article


Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, (UGC approved deemed to be University, Govt. of India), New Delhi–110062, India


Objective(s): Inflammation is the major progenitor of obesity and associated metabolic disorders. The current study investigated the modulatory role of saroglitazar on adipocyte dysfunction and associated inflammation in monosodium glutamate (MSG) obese Wistar rats.
Materials and Methods: The molecular docking simulation studies of saroglitazar and fenofibrate were performed on the ligand-binding domain of NLRP3 and NF- κB. Under in vivo study, neonatal pups received normal saline or MSG (4 g/kg, SC) for 7 alternate days after birth. After keeping for 42 days as such, animals were divided into seven groups: Normal control; MSG control; MSG + saroglitazar (2 mg/kg); MSG + saroglitazar (4 mg/kg); saroglitazar (4 mg/kg) per se; MSG + fenofibrate (100 mg/kg); fenofibrate (100 mg/kg) per se. Drug treatments were given orally, from the 42nd to 70th day. On day 71, blood was collected and animals were sacrificed for isolation of liver and fat pads. 
Results: In silico study showed significant binding of saroglitazar and fenofibrate against NLRP3 and NF- κB. Saroglitazar significantly reduced body weight, body mass index, Lee’s index, fat pad weights, adiposity index, decreased serum lipids, interleukin-1β (IL-1β), tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), leptin, insulin, blood glucose, HOMA-IR values, oxidative stress in the liver and increased hepatic low-density lipoprotein receptor levels. Histopathological analysis of the liver showed decreased inflammation and vacuolization, and reduced adipocyte cell size. Immunohistochemical analysis showed suppression of NLRP3 in epididymal adipocytes and NF- κB expression in the liver. 
Conclusion: Saroglitazar ameliorated obesity and associated inflammation via modulation of NLRP3 inflammasome and NF- κB in MSG obese Wistar rats.


1. Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Anti-obesity effects of dichloromethane leaf extract of gnidia glauca in high fat diet-induced obese rats. Heliyon 2019; 5: 2800-2815.
2.    Liou CJ, Lee YK, Ting NC, Chen YL, Shen SC, Wu SJ, et al. Protective effects of licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet. Cells 2019; 8: 447-467.
3.    Juretić N, Sepúlveda R, D’Espessailles A, Vera DB, Cadagan C, de Miguel M, et al. Dietary alpha-and gamma-tocopherol (1: 5 ratio) supplementation attenuates adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers in a high-fat-diet–fed murine model. Nutrition 2021; 85: 111-139.
4.    Du H, You JS, Zhao X, Park JY, Kim SH, Chang KJ. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J  Biomed  Sci 2010; 17: 1-5.  
5.    Balusamy SR, Veerappan K, Ranjan A, Kim YJ, Chellappan DK, Dua K, et al. Phyllanthus emblica fruit extract attenuates lipid metabolism in 3T3-L1 adipocytes via activating apoptosis mediated cell death. Phytomedicine 2020; 66: 153129-153169.
6.    Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2020; 10: 1-20.
7.    Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2: 236-240. 
8.    Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62: 720-733. 
9.    Brocker CN, Yue J, Kim D, Qu A, Bonzo JA, Gonzalez FJ. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. Am J Physiol Gastrointest Liver Physiol  2017; 312: 283-299.
10.    Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA, et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res 2014; 55: 180-189.
11.    Milner JJ, Beck MA. The impact of obesity on the immune response to infection. Proc Nutr Soc 2012; 71: 298-306.
12.    Othman ZA, Zakaria Z, Suleiman JB, Ghazali WS, Mohamed M. Anti-atherogenic effects of  orlistat on obesity-induced vascular oxidative stress rat model. Antioxidants 2021; 10: 251-267.
13.    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85–97. 
14.    Unamuno X, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Valentí V, et al.  NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling.  Cell Mol Immunol 2021; 18: 1045-1057. 
15.    Wani K, AlHarthi H, Alghamdi A, Sabico S, Al-Daghri NM. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int J Environ Res Public Health 2021; 18: 511-532. 
16.    Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22: 550–559. 
17.    Ruan XZ, Moorhead JF, Tao JL, Ma KL, Wheeler DC, Powis SH, et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines. Arterioscler Thromb Vasc Biol 2006; 26: 1150-1155.
18.    Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374: 341-344.
19.    Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2:236-240.
20.    Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62: 720-733. 
21.    Brocker CN, Yue J, Kim D, Qu A, Bonzo JA, Gonzalez FJ. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from    nonparenchymal    cells. Am J Physiol Gastrointest Liver Physiol  2017; 312: 283-299. 
22.    Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22: 10545-10571. 
23.    Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPARa in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116: 571–580. 
24.    Mogilenko DA, Kudriavtsev IV, Shavva VS, Dizhe EB, Vilenskaya EG, Efremov AM, et al. Peroxisome proliferator-activated receptor a positively regulates complement C3 expression but inhibits tumor necrosis factor-mediated activation of C3 gene in mammalian hepatic-derived cells. J Biol Chem 2013; 288: 1726–1738.
25.    Castoldi A, Naffah de Souza C, Câmara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front immunol 2016; 6: 637-648. 
26.    Jain MR, Giri SR, Trivedi C, Bhoi B, Rath A, Vanage G, et al. Saroglitazar, a novel PPARalpha/gamma agonist with    predominant PPAR alpha activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models.   Pharmacol Res Perspect 2015; 3: 1-14. 
27.    Agrawal R. The first approved agent in the glitazar’s class: saroglitazar. Curr Drug Targets 2014; 15: 151-155.
28.    Jani RH, Pai V, Jha P, Jariwala G, Mukhopadhyay S, Bhansali A, et al. A multicenter, prospective, randomized, double-blind study to evaluate the safety and efficacy of saroglitazar  2 and 4 mg compared with placebo in type 2 diabetes mellitus patients having      hypertriglyceridemia not controlled with atorvastatin therapy (PRESS VI). Diabetes Technol Ther 2014; 16: 63-71. 
29.    Sosale A, Saboo B, Sosale B. Saroglitazar for the treatment of hypertrig-lyceridemia in patients with type 2 diabetes: current evidence. Diabetes Metab Syndr Obes Targets Ther 2015; 8: 189-197. 
30.    Collison KS, Makhoul NJ, Zaidi MZ, Inglis A, Andres BL, Ubungen R, et al. Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice. Nutr Metab 2013; 10: 1-8. 
31.    Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A. Natural products as safeguards   against monosodium glutamate-induced toxicity. Iran J Basic Med Sci 2020; 23:416-430.
32.    Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.  J Comput Chem 2010; 31:455–461. 
33.    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform 2011; 3: 1-4.
34.    Kumar P, Bhandari U. Protective effect of Trigonella foenum-graecum Linn. on   monosodium glutamate-induced dyslipidemia and oxidative stress in rats. Indian J Pharmacol 2013; 45: 136-140.
35.    Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats.  Lab Anim  2007; 41: 111-119. 
36.    Altunkaynak BZ, Ozbek E. Overweight and structural alterations of the liver in female rats fed a high-fat diet: A stereological and histological study. Turk J Gastroenterol 2009; 20: 93-103.
37.    Bernardis LL, Patterson BD. Correlation between ‘Lee index’ and carcass fat content in weaning   and adult female rats with hypothalamic lesions. J Endocrinol 1968; 40: 527-528. 
38.    Bansal P, Bhandari U, Sharma K, Arya P. Embelin modulates metabolic endotoxemia and associated obesity in high fat  diet fed C57BL/6 mice. Hum Exp Toxicol 2021; 40: 60-70.
39.    Aref AB, Ahmed OM, Ali LA, Semmler M. Maternal rat diabetes mellitus deleteriously affects insulin sensitivity and beta-cell function in the offspring. J Diabetes Res 2013; :429154-429164.
40.    Arya P, Bhandari U. Involvement of the toll-like receptors-2/nuclear factor-kappa B signaling pathway in atherosclerosis induced by high-fat diet and zymosan A in C57BL/6 mice. Indian J Pharmacol 2020; 52: 203-209.
41.    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358.
42.    Claiborne AL. Catalase activity. In CRC handbook of methods for oxygen radical research 2018 (pp. 283-284). CRC press.
43.    Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968; 25: 192-205.
44.    Cuello AC. (ed.) Immunohistochemistry II. Wiley Press; 1993.
45.    Grice JW, Iwasaki M. A truly multivariate approach to MANOVA. Appl Multivar Res 2008; 12: 199-226.
46.    Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7: 146-157.
47.    Kumar P, Bhandari U. Fenugreek seed extract prevents fat deposition in monosodium glutamate (MSG)-obese rats.  Drug Res 2016; 66: 174-180.
48.    Ma H, Zhang G, Mou C, Fu X, Chen Y. Peripheral CB1 receptor neutral antagonist, AM6545, ameliorates hypometabolic obesity and improves adipokine secretion in monosodium glutamate induced obese mice. Front Pharmacol 2018; 9: 156-166. 
49.    Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444: 847-853.  
50.    Wang N, Zhao TT, Li SM, Sun X, Li ZC, Li YH, et al. Fibroblast growth factor 21 exerts its anti‐inflammatory effects on multiple cell types of adipose tissue in obesity. Obesity 2019; 27: 399-408. 
51.    Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013; 5: 1218-1240. 
52.    Furuya DT, Poletto AC, Favaro RR, Martins JO, Zorn TM, Machado UF. Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate–treated obese mice. Metabolism 2010; 59: 395-399.   
53.    Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar deactivates the hepatic LPS/TLR4 signaling pathway and ameliorates adipocyte dysfunction in rats with high-fat emulsion/LPS model-induced non-alcoholic steatohepatitis. Inflammation 2019; 42: 1056-1070.
54.    Diéguez C, Vazquez MJ, Romero A, López M, Nogueiras R. Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and  melanocortins. Neuroendocrinology 2011; 94: 1-11. 
55.    Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166-2170.
56.    Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014; 220: 47- 59.
57.    Sui GG, Xiao HB, Lu XY, Sun ZL. Naringin activates AMPK resulting in altered expression of SREBPs, PCSK9, and LDLR to reduce body weight in obese C57BL/6J mice. J Agric  Food   Chem 2018; 66: 8983-8990.        
58.    Du Y, Li S, Cui CJ, Zhang Y, Yang SH, Li JJ. Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: linking dyslipidemia with obesity. J Transl Med 2016; 14: 1-9.           
59.    Fayyad AM, Khan AA, Abdallah SH, Alomran SS, Bajou K, Khattak MN. Rosiglitazone enhances browning adipocytes in association with MAPK and PI3-K pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int J Mol  Sci 2019; 20: 1618-1634.    
60.    Vinaik R, Barayan D, Abdullahi A, Jeschke MG. NLRP3 inflammasome mediates white adipose tissue browning after burn. Am J Physiol Endocrinol Metab AM J 2019; 317: 751-759.