Lactobacilli and Bifidobacterium as anti- atherosclerotic agents

Document Type : Review Article


1 Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

2 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran


Atherosclerosis is the thickening or hardening of the arteries which is caused by a buildup of atheromatous plaque in the inner lining of an artery. Hypercholesterolemia, inflammation, oxidative stress, and trimethylamine N-oxide (TMAO) are important risk factors for atherosclerosis. Therefore, this study aimed to review the anti-atherosclerotic effects of Lactobacilli and Bifidobacterium via improving lipid profile and reducing the effects of oxidative stress, inflammation, and TMAO. To prepare the present review, several databases such as Scopus, PubMed, and Google Scholar were searched, and relevant articles from 1990 until 2022 were selected and reviewed. The present review showed that Lactobacilli and Bifidobacterium reduce the risk of atherosclerosis in both in vitro and in vivo studies by breaking down or altering cholesterol metabolism with the help of their by-products and by reducing inflammation and oxidative stress and TMAO. Consumption of Lactobacilli and Bifidobacterium can be useful in prevention of atherosclerosis.


Main Subjects

1. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med 2014;5:927-946.
2. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;12:204-212.
3. Mendis S, Puska P, Norrving B, Organization WH. Global atlas on cardiovascular disease prevention and control: World Health Organization; 2011.
4. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937-952.
5. Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385:117-171.
6. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011;123:933-944.
7. Bhatnagar P, Wickramasinghe K, Wilkins E, Townsend N. Trends in the epidemiology of cardiovascular disease in the UK. Heart 2016;102:1945-1952.
8. Nichols M, Townsend N, Luengo-Fernandez R, Leal J, Gray A, Scarborough P et al. European Cardiovascular Disease Statistics 2012. 1st ed. European Heart Network, 2012.
9. Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol 2019;103:9217-9228.
10. Arsenault BJ, Rana JS, Stroes ES, Després J-P, Shah PK, Kastelein JJ, et al. Beyond low-density lipoprotein cholesterol: Respective contributions of non–high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol 2009;55:35-41.
11. Control CfD, Prevention. Vital signs: prevalence, treatment, and control of high levels of low-density lipoprotein cholesterol-United States, 1999-2002 and 2005-2008. MMWR Morb Mortal Wkly Rep 2011;60:109-114.
12. Liong M, Shah N. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 2005;88:55-66.
13. Upadhyay N, Moudgal V. Clinical review-probiotics: A Review. J Clin Outcomes Manag 2012;19:76.
14. Gregoret V, Perezlindo M, Vinderola G, Reinheimer J, Binetti A. A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use. Food Microbiol 2013;34:19-28.
15. Fuller R. Probiotic in man and animals. J Appl Bacteriol 1989;66:131-139.
16. Abdi M, Ranjbar R. A review on antiviral efficacy of Bifidobacterium species. Rev Med Microbiol 2021;27:21-28.
17. Toma MM, Pokrotnieks J. Probiotics as functional food: microbiological and medical aspects. Acta Universitatis Latviensis 2006;710:117-129.
18. Salminen SJ, Gueimonde M, Isolauri E. Probiotics that modify disease risk. J Nutr 2005;135:1294-1298.
19. Ichim TE, Patel AN, Shafer KA. Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome. J Transl Med 2016;14:1-9.
20. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G. The perspective on cholesterol‐lowering mechanisms of probiotics. Mol Nutr Food Res 2015;59:94-105.
21. Hassan A, Din AU, Zhu Y, Zhang K, Li T, Wang Y, et al. Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE−/− mice through modulation of proinflammatory cytokines and oxidative stress. Appl Microbiol Biotechnol 2020;104:6337-6350.
22. Qiu L, Tao X, Xiong H, Yu J, Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct 2018;9:4299-4309.
23. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-430.
24. Kapourchali FR, Surendiran G, Goulet A, Moghadasian MH. The role of dietary cholesterol in lipoprotein metabolism and related metabolic abnormalities: a mini-review. Crit Rev Food Sci Nutr 2016;56:2408-2415.
25. Yamamoto H, Yamanashi Y, Takada T, Mu S, Tanaka Y, Komine T, et al. Hepatic expression of niemann-pick C1-like 1, a cholesterol reabsorber from bile, exacerbates western diet–induced atherosclerosis in LDL receptor mutant mice. Mol Pharmacol 2019;96:47-55.
26. Yu L. The structure and function of Niemann–Pick C1-like 1 protein. Curr Opin Lipidol 2008;19:263-269.
27. Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2020;21:225-245.
28. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: A delicate balance. Cell metab 2008;8:512-521.
29. Dash S, Xiao C, Morgantini C, Lewis GF. New insights into the regulation of chylomicron production. Annu Review Nutr 2015;35:265-294.
30. Feingold KR, Grunfeld C. The Effect of inflammation and infection on lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A, et al., eds. Endotext, South Dartmouth (MA). 2019.
31. Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019;569:565-569.
32. Lusis AJ. Atherosclerosis. Nature 2000;407:233-241.
33. Vourakis M, Mayer G, Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. International J Mol Sci 2021;22:8074.
34. Hardy LM, Frisdal E, Le Goff W. Critical role of the human ATP-binding cassette G1 transporter in cardiometabolic diseases. Int J Mol Sci 2017;18:1892.
35. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem 2002;277:18793-18800.
36. Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol 2008;59:31-55.
37. Smith LP, Nierstenhoefer M, Yoo SW, Penzias AS, Tobiasch E, Usheva A. The bile acid synthesis pathway is present and functional in the human ovary. PLoS One 2009;4:e7333.
38. Xu Y, Li F, Zalzala M, Xu J, Gonzalez FJ, Adorini L, et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 2016;64:1072-1085.
39. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24:41-50.
40. Li T, Chiang JY. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020;9:152.
41. Lye H-S, Rahmat-Ali GR, Liong M-T. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 2010;20:169-175.
42. Lye H-S, Rusul G, Liong M-T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 2010;93:1383-1392.
43. Ranjbar R, Vahdati SN, Tavakoli S, Khodaie R, Behboudi H. Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother 2021;141:111817.
44. Bordoni A, Amaretti A, Leonardi A, Boschetti E, Danesi F, Matteuzzi D, et al. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl Microbiol Biotechnol 2013;97:8273-8281.
45. Guo Z, Liu X, Zhang Q, Shen Z, Tian F, Zhang H, et al. Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 2011;21:844-850.
46. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2014;3:14-24.
47. Huang Y, Wang X, Wang J, Wu F, Sui Y, Yang L, et al. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci 2013;96:2746-2753.
48. Kim GB, Yi SH, Lee BH. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J Dairy Sci 2004;87:258-266.
49. McAuliffe O, Cano RJ, Klaenhammer TR. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2005;71:4925-4929.
50. Song M, Yun B, Moon J-H, Park D-J, Lim K, Oh S. Characterization of selected Lactobacillus strains for use as probiotics. Korean J Food Sci Anim Resour 2015;35:551-556.
51. Hosono A. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 1999;82:243-248.
52. Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by lactococci. J Dairy Sci 2002;85:3182-3188.
53. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, et al. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012;2012 :902917.
54. Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food Funct 2018;9:3057-3068.
55. Prasanna P, Grandison AS, Charalampopoulos D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 2014;55:247-262.
56. Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 2020;162:853-865.
57. Sasikumar K, Vaikkath DK, Devendra L, Nampoothiri KM. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol 2017;241:1152-1156.
58. Kahouli I, Malhotra M, Tomaro-Duchesneau C, Saha S, Marinescu D, Rodes L, et al. Screening and in vitro analysis of Lactobacillus reuteri strains for short chain fatty acids production, stability and therapeutic potentials in colorectal cancer. J Bioequivalence Bioavailab 2015;7:39.
59. Usta-Gorgun B, Yilmaz-Ersan L. Short-chain fatty acids production by Bifidobacterium species in the presence of salep. Electronic J Biotechnol 2020;47:29-35.
60. Hoda M. Probiotics bacteria from egyptian infants cause cholesterol removal in media and survive in yoghurt. Food  Nutr Sci 2011;2:4.
61. Korecka A, de Wouters T, Cultrone A, Lapaque N, Pettersson S, Doré J, et al. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am J Physiol Gastrointest Liver Physiol 2013;304:G1025-G1037.
62. Alex S, Lange K, Amolo T, Grinstead JS, Haakonsson AK, Szalowska E, et al. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol cell biol 2013;33:1303-1316.
63. Marcil Vr, Delvin E, Garofalo C, Levy E. Butyrate impairs lipid transport by inhibiting microsomal triglyceride transfer protein in Caco-2 cells. J Nutr 2003;133:2180-2183.
64. Reis S, Conceição L, Rosa D, Siqueira N, Peluzio M. Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutri Res Rev 2017;30:36-49.
65. Richards LB, Li M, van Esch BC, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. Pharma Nutr 2016;4:68-111.
66. Prasad PD, Gurav A, Zhu H, Martin PM, Vijay-Kumar M, Singh N. The relationship between probiotics and dietary fiber consumption and cardiovascular health.  Dietary Fiber for the Prevention of Cardiovascular Disease: Elsevier; 2017. p. 73-90.
67. Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2019;60:323-332.
68. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 2011;73:239-259.
69. Trasino SE, Dawson HD, Urban Jr JF, Wang TT, Solano-Aguilar G. Feeding probiotic Lactobacillus paracasei to Ossabaw pigs on a high-fat diet prevents cholesteryl-ester accumulation and LPS modulation of the Liver X receptor and inflammatory axis in alveolar macrophages. J Nutr Biochem 2013;24:1931-1939.
70. Liang X, Lv Y, Zhang Z, Yi H, Liu T, Li R, et al. Study on intestinal survival and cholesterol metabolism of probiotics. Food Sci Tech 2020;124:109132.
71. Wang Y, Rogers PM, Su C, Varga G, Stayrook KR, Burris TP. Regulation of cholesterologenesis by the oxysterol receptor, LXRα. J Biol Chem 2008;283:26332-26339.
72. Yoon Hs, Ju Jh, Lee Je, Park Hj, Lee Jm, Shin Hk, et al. The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterol efflux and suppress inflammation in THP‐1 cells. J Sci Food Agric 2013;93:781-787.
73. Gorenjak M, Gradišnik L, Trapečar M, Pistello M, Kozmus CP, Škorjanc D, et al. Improvement of lipid profile by probiotic/protective cultures: Study in a non-carcinogenic small intestinal cell model. New Microbiol 2014;37:51-64.
74. Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol 2009;204:233-240.
75. Yamanashi Y, Takada T, Shoda JI, Suzuki H. Novel function of Niemann‐Pick C1‐like 1 as a negative regulator of Niemann‐Pick C2 protein. Hepatology 2012;55:953-964.
76. Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 2014;22:306-308.
77. Liang X, Zhang Z, Zhou X, Lu Y, Li R, Yu Z, et al. Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via down-regulating FXR. Food Funct 2020;11:9903-9911.
78. Sudha MR, Chauhan P, Dixit K, Babu S, Jamil K. Probiotics as complementary therapy for hypercholesterolemia. Biol Med 2009;1:1-13.
79. Miremadi F, Ayyash M, Sherkat F, Stojanovska L. Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. J Funct Foods 2014;9:295-305.
80. Taranto M, Medici M, Perdigon G, Holgado AR, Valdez G. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J Dairy Sci 1998;81:2336-2340.
81. Pereira DI, McCartney AL, Gibson GR. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol 2003;69:4743-4752.
82. Nguyen T, Kang J, Lee M. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 2007;113:358-361.
83. Sirilun S, Chaiyasut C, Kantachote D, Luxananil P. Characterisation of non human origin probiotic Lactobacillus plantarum with cholesterol-lowering property. African J Microbiol Res 2010;4:994-1000.
84. Abdi M, Lohrasbi V, Asadi A, Esghaei M, Jazi FM, Rohani M, et al. Interesting probiotic traits of mother’s milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog 2021;158:104998.
85. Ha C-G, Cho J-K, Lee C-H, Chai Y-G, Ha Y, Shin S-H. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J Microbiol Biotechnol 2006;16:1201-1209.
86. Wang SC, Chang CK, Chan SC, Shieh JS, Chiu CK, Duh P-D. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol. Asian Pac J Trop Biomed 2014;4:523-528.
87. Jeun J, Kim S, Cho S-Y, Jun H-j, Park H-J, Seo J-G, et al. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 2010;26:321-330.
88. Guan X, Xu Q, Zheng Y, Qian L, Lin B. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Braz J Microbiol 2017;48:730-739.
89. Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D. Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products. Food Funct 2020;11:1397-1409.
90. Sarkar S. Potential of acidophilus milk to lower cholesterol. Nutr Food Sci 2003;33:273-277.
91. Liong M, Shah N. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 2005;15:391-398.
92. Kim Y, Whang JY, Whang KY, Oh S, Kim SH. Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci Biotechnol Biochem 2008;72:1483.
93. Minelli EB, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, et al. Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J 2004;14:723-736.
94. Liong M, Shah N. Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J Dairy Sci 2006;89:1390-1399.
95. Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S. Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 2015;166:428-439.
96. Beena A, Prasad V. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats. J Dairy Res 1997;64:453-457.
97. Taranto M, Sesma F, De Valdez GF. Localization and primary characterization of bile salt hydrolase from Lactobacillus reuteri. Biotechnol Lett 1999;21:935-938.
98. Hosono A. Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J Dairy Sci 2000;83:1705-1711.
99. Xie N, Cui Y, Yin Y-N, Zhao X, Yang J-W, Wang Z-G, et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 2011;11:1-11.
100. Bendali F, Kerdouche K, Hamma-Faradji S, Drider D. In vitro and in vivo cholesterol lowering ability of Lactobacillus pentosus KF923750. Benef Microbes. 2017;8:271-280.
101. Park S, Kang J, Choi S, Park H, Hwang E, Kang Y, et al. Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS One 2018;13:e0203150.
102. Asan-Ozusaglam M, Gunyakti A. Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci Biotechnol 2019;28:501-509.
103. Wang G, Huang W, Xia Y, Xiong Z, Ai L. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food Funct 2019;10:1684-1695.
104. Ranji P, Agah S, Heydari Z, Rahmati-Yamchi M, Alizadeh AM. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer. Iran J Basic Med Sci 2019;22:631-636.
105. Al-Sheraji S, Amin I, Azlan A, Manap M, Hassan F. Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats. Benef Microbes 2015;6:661-668.
106. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA. Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536. Food Chem 2012;135:356-361.
107. Bo T-b, Wen J, Zhao Y-c, Tian S-j, Zhang X-y, Wang D-h. Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J Steroid Biochem Mol Biol 2020;198:105602.
108. Lokapirnasari WP, Sahidu AM, Maslachah L, Yulianto A, Najwan R, editors. The effect of combination Bifidobacterium sp and Lactobacillus acidophilus probiotic on egg yolk cholesterol, HDL, and LDL. IOP Conference Series: Earth and Environmental Science; 2020: IOP Publishing.
109. Jiang J, Wu C, Zhang C, Zhang Q, Yu L, Zhao J, et al. Strain-Specific effects of Bifidobacterium longum on hypercholesterolemic rats and potential mechanisms. Int J Mol Sci 2021;22:1305.
110. Fuentes MC, Lajo T, Carrión JM, Cuñé J. A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Med J Nutr Metab 2016;9:125-135.
111. Fuentes MC, Lajo T, Carrión JM, Cuné J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 2013;109:1866-1872.
112. Simons LA, Amansec SG, Conway P. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis 2006;16:531-535.
113. Lewis S, Burmeister S. A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids. Eur J Clin Nutr 2005;59:776-780.
114. Ahn HY, Kim M, Chae JS, Ahn Y-T, Sim J-H, Choi I-D, et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein AV levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis 2015;241:649-656.
115. Chiu H-F, Fang C-Y, Shen Y-C, Venkatakrishnan K, Wang C-K. Efficacy of probiotic milk formula on blood lipid and intestinal function in mild hypercholesterolemic volunteers: A placebo-control, randomized clinical trial. Probiotics Antimicrob Proteins 2021;13:624-632.
116. Xiao J, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 2003;86:2452-2461.
117. Anderson JW, Gilliland SE. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 1999;18:43-50.
118. Larkin TA, Astheimer LB, Price WE. Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 2009;63:238-245.
119. Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PloS One 2017;12:1-21.
120. Jones ML, Martoni CJ, Parent M, Prakash S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 2012;107:1505-1513.
121. Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M. The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 2010;103:1778-1783.
122. Ataie-Jafari A, Larijani B, Majd HA, Tahbaz F. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab 2009;54:22-27.
123. Lee Y, Ba Z, Roberts RF, Rogers CJ, Fleming JA, Meng H, et al. Effects of Bifidobacterium animalis subsp. lactis BB-12® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: A randomized controlled trial. Nutr J 2017;16:1-9.
124. Ivey KL, Hodgson JM, Kerr DA, Thompson PL, Stojceski B, Prince RL. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutr Metab Cardiovasc Dis 2015;25:46-51.
125. Ejtahed H, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 2011;94:3288-3294.
126. Mazloom Z, Yousefinejad A, Dabbaghmanesh MH. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci 2013;38:38-43.
127. Greany KA, Nettleton JA, Wangen KE, Thomas W, Kurzer MS. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J Nutr 2004;134:3277-3283.
128. Naruszewicz M, Johansson M-L, Zapolska-Downar D, Bukowska H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 2002;76:1249-1255.
129. Rerksuppaphol S, Rerksuppaphol L. A randomized double-blind controlled trial of Lactobacillus acidophilus plus Bifidobacterium bifidum versus placebo in patients with hypercholesterolemia. J Clin Diagn Res 2015;9:1-4.
130. Kuipers R, De Graaf D, Luxwolda M, Muskiet M, Dijck-Brouwer D, Muskiet F. saturated fat, carbohydrates and cardiovascular. Neth J Med 2011;69:372-378.
131. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195-2207.
132. Fang Y, Chen H, Zhang X, Zhang H, Xia J, Ding K, et al. Probiotic administration of Lactobacillus rhamnosus GR-1 attenuates atherosclerotic plaque formation in ApoE-/-mice fed with a high-fat diet. Eur Rev Med Pharmacol Sci 2019;23:3533-3541.
133. Gerrit L, Sijbrands EJ, Staub D, Coll B, Folkert J, Feinstein SB, et al. Noninvasive imaging of the vulnerable atherosclerotic plaque. Curr probl Cardiol 2010;35:556-591.
134. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep 2017;19:1-11.
135. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014;237:208-219.
136. Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 2004;57:453-455.
137. Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci 2008;13:5323-5344.
138. Mehta JL. Oxidized or native low-density lipoprotein cholesterol: Which is more important in atherogenesis? American College of Cardiology Foundation Washington, DC; 2006. p. 980-982.
139. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010;23:75-93.
140. Ding Y-H, Qian L-Y, Pang J, Lin J-Y, Xu Q, Wang L-H, et al. The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 2017;8:59915-59928.
141. Kong Y, Olejar KJ, On SL, Chelikani V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. Antioxidants 2020;9:610.
142. Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 2013;17:108-115.
143. Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, et al. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem 2020;79:108353.
144. Yadav R, Khan SH, Mada SB, Meena S, Kapila R, Kapila S. Consumption of probiotic Lactobacillus fermentum MTCC: 5898-fermented milk attenuates dyslipidemia, oxidative stress, and inflammation in male rats fed on cholesterol-enriched diet. Probiotics Antimicrob Proteins 2019;11:509-518.
145. Zhang Y, Du R, Wang L, Zhang H. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. Eur Food Res Technol 2010;231:151-158.
146. Kim JY, Kim H, Jung BJ, Kim N-R, Park JE, Chung DK. Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol Cells 2013;35:115-124.
147. Fu BC, Hullar MAJ, Randolph TW, Franke AA, Monroe KR, Cheng I, et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr 2020;111:1226-1234.
148. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine‐N‐oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res 2017;61:1600324.
149. Canyelles M, Tondo M, Cedó L, Farràs M, Blanco-Vaca F. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci 2018;19:3228.
150. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163:1585-1595.
151. Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 2018;17:1-8.
152. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576-585.
153. Zhao Z-H, Xin F-Z, Da Zhou Y-QX, Liu X-L, Yang R-X, Pan Q, et al. Trimethylamine N-oxide attenuates high-fat high-cholesterol diet-induced steatohepatitis by reducing hepatic cholesterol overload in rats. World  J Gastroenterol 2019;25:2450-2462.
154.    Collins HL, Drazul-Schrader D, Sulpizio AC, Koster PD, Williamson Y, Adelman SJ, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 2016;244:29-37.
155. Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018;97:941-947.