Phenotypic and genotypic investigation of metallo-β-lactamases in Pseudomonas aeruginosa clinical isolates in Bushehr, Iran

Document Type : Original Article


1 Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

2 Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran

3 The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran


Objective(s): Production of metallo-β-lactamases (MBLs) is an important mechanism of resistance to carbapenems. This study aimed to detect the MBL-producing Pseudomonas aeruginosa clinical isolates and to investigate the presence of blaVIM, blaIMP, blaSPM, blaNDM, blaGIM, blaAIM, and blaSIM genes in these isolates in Bushehr, Iran. 
Materials and Methods: A total of 169 P. aeruginosa clinical isolates were collected from three hospitals in Bushehr. The modified carbapenem inactivation method (mCIM) was used for the phenotypic detection of carbapenemase production. A combination disk test (CDT) was performed for the phenotypic detection of MBL production. To investigate the presence of blaVIM, blaIMP, blaSPM, blaNDM, blaGIM, blaAIM, and blaSIM genes, PCR and sequencing was carried out.
Results: Based on the results of mCIM, 40 (23.7%) of 169 isolates were carbapenemase producers. CDT revealed that 26 (15.4%) isolates were MBL producers. blaIMP, blaNDM, and blaVIM genes were found in 18 (69.2%), 8 (30.8%), and 1 (3.8%) of the MBL-producing isolates, respectively. Coexistence of blaIMP and blaNDM was observed in 2 (7.7%) MBL-producing isolates. Among all 169 P. aeruginosa isolates, 23 (13.6%) harbored blaNDM, 18 (10.6%) carried blaIMP, and 1 (0.6%) carried the blaVIM gene. blaSPM, blaGIM, blaAIM, and blaSIM were not found in the present study. 
Conclusion: blaNDM, blaIMP, and blaVIM genes were detected in this study, which could be a warning sign about the prevalence of these genes among P. aeruginosa clinical isolates in our region. Proper monitoring and detection of MBL-producing isolates are essential steps to prevent the spread of these isolates.


1. Moosavian M, Rahimzadeh M. Molecular detection of metallo-β-lactamase genes, blaIMP-1, blaVIM-2 and blaSPM-1 in imipenem resistant Pseudomonas aeruginosa isolated from clinical specimens in teaching hospitals of Ahvaz, Iran. Iran J Microbiol 2015; 7: 2-6.
2. Vanegas JM, Cienfuegos AV, Ocampo AM, López L, del Corral H, Roncancio G, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol 2014; 52: 3978-3986.
3. Hong DJ, Bae IK, Jang I-H, Jeong SH, Kang H-K, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother 2015; 47: 81-97.
4. Ismail SJ, Mahmoud SS. First detection of New Dehli metallo-β-lactamases variants (NDM-1, NDM-2) among Pseudomonas aeruginosa isolated from Iraqi hospitals. Iran J Microbiol 2018; 10: 98-103.
5. Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43: 3129-3135.
6. Fournier D, Garnier P, Jeannot K, Mille A, Gomez A-S, Plésiat P. A convenient method to screen for carbapenemase-producing Pseudomonas aeruginosa. J Clin Microbiol 2013; 51: 3846-3848.
7. Jabalameli F, Taki E, Emaneini M, Beigverdi R. Prevalence of metallo-β-lactamases-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Rev Soc Bras Med Trop 2018; 51: 270-276.
8. Ghamgosha M, Shahrekizahedani S, Kafilzadeh F, Bameri Z, Taheri RA, Farnoosh G. metallo-β-lactamases VIM-1, SPM-1, and IMP-1 genes among clinical Pseudomonas aeruginosa species isolated in Zahedan, Iran. Jundishapur J Microbiol 2015; 8: e17489.
9. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist 2019; 12: 2115-2133.
10. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 2004; 42: 2074-2079.
11. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility testing. 28th ed. CLSI 2018.
12. Heinrichs A, Huang TD, Berhin C, Bogarets P, Glupczynski Y. Evaluation of several phenotypic methods for the detection of carbapenemase-producing Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2015;34:1467-1474.
13. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamases-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002; 40: 3798-3801.
14. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119-123.
15. Janice J, Agyepong N, Owusu-Ofori A, Govinden U, Essack SY, Samuelsen Ø, et al. Carbapenem resistance determinants acquired through novel chromosomal integrations in extensively drug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65: e0028921.
16. Bagheri Bejestani F, Hakemi-Vala M, Momtaheni R, Bagheri Bejestani O, Gholami M. The frequency of imp and vim genes among Pseudomonas aeruginosa isolates from children’s medical center of Tehran. Arch Clin Infect Dis 2015; 10: e20991.
17. Mirbagheri SZ, Meshkat Z, Naderinasab M, Rostami S, Nabavinia MS, Rahmati M. Study on imipenem resistance and prevalence of blaVIM1 and blaVIM2 metallo-beta lactamases among clinical isolates of Pseudomonas aeruginosa from Mashhad, Northeast of Iran. Iran J Microbiol 2015; 7: 72-78.
18. Arunagiri K, Sekar B, Sangeetha G, John J. Detection and characterization of metallo-β-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J 2012; 61: 778-783.
19. Haghi F, Keramati N, Hemmati F, Zeighami H. Distribution of integrons and gene cassettes among metallo-β-lactamase producing Pseudomonas aeruginosa clinical isolates. Infect Epidemiol Med 2017; 3: 36-40.
20. Yousefi S, Farajnia S, Nahaei MR, Akhi MT, Ghotaslou R, Soroush MH, et al. Detection of metallo-β-lactamase-encoding genes among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Diagn Microbiol Infect Dis 2010; 68: 322-325.
21. Sader HS, Reis AO, Silbert S, Gales AC. IMPs, VIMs and SPMs: the diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect 2005; 11: 73-76.
22. Ellappan K, Narasimha HB, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in south India. J Glob Antimicrob Resist 2018; 12: 37-43.
23. Pellegrino FLPC, Casali N, Nouér SA, Riley LW, Moreira BM. A carbapenem-susceptible Pseudomonas aeruginosa strain carrying the blaSPM gene. Diagn Microbiol Infect Dis 2008; 61: 214-216.