Protective effects of equol on the cartilage and subchondral bone in ovariectomized rats with osteoarthritis

Document Type : Original Article

Authors

1 Department of Orthopedic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, China

2 School of Public Health, North China University of Science and Technology, Tangshan, 063000, China

3 Department of Orthopedic Surgery, Emergency General Hospital, Beijing, 100028, China

Abstract

Objective(s): This study aimed to determine the therapeutic effect of equol (EQ) on osteoporotic osteoarthritis (OP OA). 
Materials and Methods: Thirty-six 12-week-old female Sprague-Dawley rats were randomly divided into sham group, OP OA group, and EQ group (n=12). OP OA was induced by anterior cruciate ligament transection (ACLT) combined with ovariectomy (OVX). EQ was orally administrated (10 μg/g/day) after the operation for 12 weeks. The efficacy was evaluated by gross pathology and histopathologic evaluation. The underlying mechanism was investigated by immunohistochemical analysis, micro-computed tomography (micro-CT) scanning, and tartrate-resistant acid phosphatase (TRAP) staining. 
Results: EQ effectively retarded cartilage degeneration, decreased the levels of matrix metalloproteinases-13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), nuclear factor-kappa B P65 (NF-κB P65) and caspase-3, and increased the levels of collagen type II (Col-II), Col-I, aggrecan (AGG), and inhibitor of NF-κB α (IκBα) in the cartilage. In addition, EQ increased bone mineral density, improved the microstructural parameters of the subchondral bone (SB), and decreased the number of osteoclasts. 
Conclusion: EQ exerted a chondroprotective effect on OP OA in rats, associated with inhibition of the NF-κB signaling pathway and chondrocyte apoptosis. Furthermore, EQ showed an osteoprotective effect on SB via inhibiting osteoclastic activities.

Keywords


1. Khodir SA, Al-Gholam MA, Salem HR. L-Carnitine potentiates the anti-inflammatory and antinociceptive effects of diclofenac sodium in an experimentally-induced knee osteoarthritis rat model.  Iran J Basic Med Sci 2020; 23:1035-1044. 
2. Erb A, Brenner H, Gunther KP, Sturmer T. Hormone replacement therapy and patterns of osteoarthritis: baseline data from the Ulm Osteoarthritis Study. Ann Rheum Dis 2000; 59:105-109. 
3. Gao W, Zeng C, Cai D, Li Y, Liu B, Chen Y, et al. Serum concentrations of selected endogenous estrogen and estrogen metabolites in pre- and post-menopausal Chinese women with osteoarthritis. J Endocrinol Invest 2010; 33:644-649. 
4. Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, et al. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 2010; 12:R152. 
5. Wang CJ, Huang CY, Hsu SL, Chen JH, Cheng JH. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals. Arthritis Res Ther 2014; 16:R139. 
6. Ravn P; Warming L; Christgau S; Christiansen C. The effect on cartilage of different forms of application of postmenopausal estrogen therapy: comparison of oral and transdermal therapy. Bone 2004; 35:1216-1221.
7. Beral V; Bull D; Reeves G; Million Women Study Collaborators. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet 2005; 365:1543-1551. 
8. Krebs EE; Ensrud KE; MacDonald R; Wilt TJ. Phytoestrogens for treatment of menopausal symptoms: A systematic review. Obstet Gynecol 2004; 104: 824-836. 
9. Ishimi Y, Miyaura C, Ohmura M, Onoe Y, Sato T, Uchiyama Y, et al. Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 1999; 140:1893-1900. 
10. Toda T, Sugioka Y, Koike T. Soybean isoflavone can protect against osteoarthritis in ovariectomized rats. J Food Sci Technol 2020;57:3409-3414. 
11. North American Menopause Society. The role of soy isoflavones in menopausal health: Report of The North American Menopause Society/Wulf H. Utian Translational Science Symposium in Chicago, IL (October 2010). Menopause 2011;18:732-753. 
12. Setchell KD; Brown NM; Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 2002; 132:3577-3584. 
13. Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, et al. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 2005; 81:1072-1079. 
14. Setchell KD, Faughnan MS, Avades T, Zimmer-Nechemias L, Brown NM, Wolfe BE, et al. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr 2003;77:411-419.
15. Jackson RL, Greiwe JS, Schwen RJ. Emerging evidence of the health benefits of S-equol, an estrogen receptor β agonist. Nutr Rev 2011; 69:432-448. 
16. Lin IC, Yamashita S, Murata M, Tachibana H, Motofumi K. Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice. J Nutr Biochem 2016; 32:101-106. 
17. Yang PY, Tang CC, Chang YC, Huang SY, Hsief SP, Fan SS, et al. Effects of tibolone on osteoarthritis in ovariectomized rats: association with nociceptive pain behaviour. Eur J Pain 2014; 18:680-690. 
18. Terencio MC, Ferrándiz ML, Carceller MC, Ruhí R, Dalmau P, Vergés J, et al. Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. Biomed Pharmacother. 2016 ;79:120-128. 
19. Mathey J, Mardon J, Fokialakis N, Puel C, Kati-Coulibaly S, Mitakou S, et al. Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol. Osteoporos Int 2007; 18:671-679. 
20. Wen ZH, Tang CC, Chang YC, Huang SY, Lin YY, Hsieh SP, et al. Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-β in chondrocytes. Sci Rep 2016; 21:1-11. Doi:10.1038/srep28862.
21. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 2006; 14:13-29. 
22. Ferrándiz ML, Terencio MC, Carceller MC, Ruhí R, Dalmau P, Vergés J, et al. Effects of BIS076 in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. BMC Musculoskelet Disord 2015; 16:92-102. 
23. Chin KE, Karamchedu NP, Patel TK, Badger GJ, Akelman MR, Moore DC, et al. Comparison of Micro-CT post-processing methods for evaluating the trabecular bone volume fraction in a rat ACL-transection model. J Biomech 2016; 49:3559-3563. 
24. Dai MW, Chu JG, Tian FM, Song HP, Wang Y, Zhang L, et al. Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture in meniscectomized guinea pigs. Osteoarthritis Cartilage 2016; 24:1103-1112. 
25. Zhu S, Chen K, Lan Y, Zhang N, Jiang R, Hu J. Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats. Bone 2013; 53:340-349. 
26. Tsai CL, Liu TK. Osteoarthritis in women: its relationship to estrogen and current trends. Life Sci 1992; 50:1737-1744. 
27. Linn S, Murtaugh B, Casey E. Role of sex hormones in the development of osteoarthritis. PM R 2012; 4:S169-173. 
28. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 2009; 11:224-239. 
29. Gao SG, Zeng C, Song Y, Tian J, Cheng C, Yang T, et al. Effect of osteopontin on the mRNA expression of ADAMTS4 and ADAMTS5 in chondrocytes from patients with knee osteoarthritis. Exp Ther Med 2015; 9:1979-1983. 
30. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 2005; 32:876-886. 
31. Quan R, Huang Z, Yue Z, Xin D, Yang D, Zhang L, et al. Effects of a proteasome inhibitor on the NF-κB signalling pathway in experimental osteoarthritis. Scand J Rheumatol 2013; 42:400-407. 
32. Kang JS, Yoon YD, Han MH, Kim HM, Han SB, Kim HM, et al. Estrogen receptor-independent inhibition of tumor necrosis factor-alpha gene expression by phytoestrogen equol is mediated by blocking nuclear factor-kappaB activation in mouse macrophages. Biochem Pharmacol 2005; 71:136-143. 
33. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281:1312-1316. 
34. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12:632-644. 
35. Racine J, Aaron RK. Post-traumatic osteoarthritis after ACL injury. R I Med J (2013) 2014; 97:25-28. 
36. Fujioka M, Uehara M, Wu J, Adlercreutz H, Suzuki K, Ishimi Y, et al. Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice. J Nutr 2004; 134:2623-2627. 
37. Kimira Y, Katsumata S, Suzuki K, Uehara M, Ueno T, Uehara M, et al. Comparative activities of the S-enantiomer and racemic forms of equol on bone fragility in ovariectomized mice. Biosci Biotechnol Biochem 2012; 76:1018-1021. 
38. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 2010; 11:599-613. 
39. Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi, Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: a pilot randomized, placebo-controlled trial. MENOPAUSE 2011;18:563-574. 
40. de la Parra C, Otero-Franqui E, Martinez-Montemayor M, Dharmawardhane SJ. The soy isoflavone equol may increase cancer malignancy via up-regulation of eukaryotic protein synthesis initiation factor eIF4G.  Biol Chem 2012; 287:41640-41650. 
41. de la Parra C, Borrero-Garcia LD, Cruz-Collazo A, Dharmawardhane S. Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G. J Biol Chem 2015; 290:6047-6057.