Rhus coriaria extracts inhibit quorum sensing related virulence and biofilm production in drug-resistant Pseudomonas aeruginosa recovered from burn wounds

Document Type : Original Article


1 Department of Biology, Salahaddin University- Erbil, Erbil, Iraq

2 Ministry of Health


Objective(s): Numerous studies have confirmed sumac’s ability to inhibit pathogens and even eradicate chronic drug-resistant infections. Current research was conducted to demonstrate the action of various sumac extracts at sub-inhibitory concentrations in modulating pathogen-related characteristics instead of killing them.
Materials and Methods: The influence of sumac extracts on the quorum sensing dependent virulence of multidrug-resistant isolates of Pseudomonas aeruginosa recovered from burn wounds was considered by detecting the effect on biofilm development, various virulence factors, and expression of bacterial exotoxin A and quorum sensing related genes.  
Results: Experiments to characterize and measure sumac extract’s impact on the P. aeruginosa growth, biofilm, exoproteases, pyocyanin, motility, and the quorum sensing networks revealed that all studied characteristics were reduced by concentrations below inhibition without affecting bacterial growth. Furthermore, the expression of exotoxin A, rhl, and las glucons was declined or even inhibited by lower levels of sumac fruit fractions. 
Conclusion: The findings revealed that sumac fights infections either by its inhibitory effect on the bacterial cells or by reducing bacterial signaling and virulence by disruption of the bacterial signal system. 


1. Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, et al. Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A Comprehensive Review. Molecules 2022; 27:1484.
2. Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005; 151:3873-3880.
3. Ahmed AA, Salih FA. Low concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds. Iran J Basic Med Sci 2019;22:568-575.
4. Sagar PK, Sharma P, Singh R. Inhibition of quorum sensing regulated virulence factors and biofilm formation by eucalyptus globulus against multidrug-resistant Pseudomonas aeruginosa. J Pharmacopuncture 2022; 25:37-45.
5. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9:117-128.
6. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG. Quorum quenching revisited-from signal decays to signalling confusion. Sensors (Basel) 2012; 12:4661-4696.
7. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003; 6:56-60.
8. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrobs  Agents Chemother 2008; 52:198-203.
9. Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 2017; 10:729-743.
10. Nasar-Abbas SM, Halkman AK. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 2004; 97:63-69.
11. Rayne S, Mazza G. Biological activities of extracts from sumac (Rhus spp.): A review. Plant Foods Hum Nutr 2007; 62:165-175.
12. Ismaeil AS, Saleh FA. Sumac (Rhus coriaria L) as quorum sensing inhibitors in Staphylococcus aureus. J Pure Appl Microbiol 2019; 13:2397-2404.
13. Mahdavi S. Antimicrobial and antioxidant activities of Iranian sumac (Rhus coriaria L.) fruit ethanolic extract. J Appl Microbiol Biochem 2018;2:1-5.
14. Nasar-Abbas S, Halkman AK. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 2004; 97:63-69.
15. YILMAZ G, Gulnur E, Demirci B, Demirci F. Chemical characterization of the fatty acid compositions and antmicrobial activity of sumac (Rhus coriaria L.) fruits, growing naturally in turkey and sold in herbalist markets. J Fac Pharm Ankara Univ 2020; 44:61-69.
16. Zalacain A, Ordoudi SA, Blazquez I, Diaz-Plaza EM, Carmona M, Tsimidou MZ, et al. Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin. Food Addit Contam 2005; 22:607-615.
17. Panico A, Cardile V, Santagati NA, Messina R. Antioxidant and protective effects of Sumac Leaves on chondrocytes. J Med Plants Res 2009; 3:855-861.
18. Harborne JB. Phytochemical Methods A guide to modern techniques of plant analysis. Third ed. London: Chapman & Hall; 1998.
19. Tille PM. Bailey & Scott’s Diagnostic Microbiology. 13 ed. China: Elsevier/Mosby; 2014.
20. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3:163-175.
21. Issac ASV, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 2011; 42:658-668.
22. Chu W, Zhou S, Jiang Y, Zhu W, Zhuang X, Fu J. Effect of traditional chinese herbal medicine with antiquorum sensing activity on Pseudomonas aeruginosa. Evid Based Complement  Alternat Med 2013; 2013:1-7.
23. Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268:7503-7508.
24. Li H, Li X, Wang Z, Fu Y, Ai Q, Dong Y, et al. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner. BMC Microbiol 2015; 15:1-8.
25. Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 2001; 183:1195-1204.
26. Limban C, Luminita Marutescu, Chifiriuc MC. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules 2011; 16: 7593-7607.
27. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL. Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol 2003; 41:4312-4317.
28. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, et al. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2004; 53:841-853.
29. Cotar A, Dinu S, Chifiriuc M-C, Banu O, Iordache C, Larion C, et al. Screening of molecular markers of quorum sensing in Pseudomonas aeruginosa strains isolated from clinical infections. Roumanian Biotechnol Lett 2008; 13:3765-3771.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25:402-408.
31. Wang M, Schaefer AL, Dandekar AA, Greenberg EP. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci U S A 2015; 112:2187-2191.
32. Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: A prospective therapeutic target for bacterial diseases. BioMed Res Int 2019; 2019:1-15.
33. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs in Context 2018; 7:1-18.
34. Golshani Z, Ahadi AM, SHarifzadeh A. Outbreak of ambler class A and D b-lactamase in multidrug-resistant Pseudomonas aeruginosa strains isolated from non burn patients. African J Microbiol Res 2013; 7:2646-2650.
35. WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics Geneva: Wold Health Organisation; 2017. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.
36. Yang Q, Scheie AA, Benneche T, Defoirdt T. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential. Scientific Rep 2015; 5:1-9.
37. Lai BM, Yan HC, Wang MZ, Li N, Shen DS. A common evolutionary pathway for maintaining quorum sensing in Pseudomonas aeruginosa. J Microbiol 2018; 56:83-89.
38. Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 2007; 7:1-10.
39. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30:285-293.
40. Mohabi S, Davood Kalantar-Neyestanaki, Mansouri S. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iran J Microbiol 2017; 9: 26-32.
41. De Vincenti L, Glasenapp Y, Catto C, Villa F, Cappitelli F, Papenbrock J. Hindering the formation and promoting the dispersion of medical biofilms: Non-lethal effects of seagrass extracts. BMC Complement Altern Med 2018; 18:1-17.
42. Hayat S, Sabri AN, McHugh TD. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J Gen Appl Microbiol 2017; 63:325-338.
43. Ahmed AA, Salih FA. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complement Altern Med 2019; 19:177.
44. Mattmann ME, Blackwell HE. Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 2010; 75:6737-6746.
45. Bjorn MJ, Michael L. Vasil, Jerald C. Sadoff, IglewskiI BH. Incidence of exotoxin production by pseudomonas species. Infect  Immun 1977; 16:362-366.
46. Albus AM, Everett C. Pesci, Runeyn-Janecky LJ, Susan E. H. West, Iglewski BH. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997; 179:3928–3935.
47. Reimmann C, Markus Beyeler, Amel Latifi, Harald Winteler, Maryline Foglino, Lazdunski A, et al. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 1997; 24:309-319.
48. Boligon A, Athayde M. Importance of HPLC in analysis of plants extracts. Austin Chromatography 2014; 1:1-2.