1. Haider S, Tabassum S, Perveen T. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: a comparative study. Brain Res Bull 2016; 127: 234-247.
2. Kakeda S, Korogi Y. The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer’s disease/mild cognitive impairment: A review. Neuroradiology 2010; 52: 711-721.
3. Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008; 51: 347-372.
4. Umar T, Hoda N. Alzheimer’s disease: A systemic review of substantial therapeutic targets and the leading multi- functional molecules. Curr Top Med Chem 2017; 17: 3370-3389.
5. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8: 595-608.
6. McGill-Carter T. Market analysis Alzheimer’s disease 2020. J Psychiatry 2020; 22: 21-22.
7. Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina AM, Winblad B, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13: 1-7.
8. Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M, Casagrande M. Executive functions in Alzheimer disease: a systematic review. Front Aging Neurosci 2019; 10: 437.
9. Oliveira D, Jun Otuyama L, Mabunda D, Mandlate F, Gonçalves- Pereira M, Xavier M, et al. Reducing the number of people with dementia through primary prevention in Mozambique, Brazil, and Portugal: an analysis of population-based data. J Alzheimers Dis 2019; 70: S283-S291.
10. Burns A, Robert P. Dementia care: international perspectives. Curr Opin Psychiatry 2019; 32: 361-365
11. Thaver A, Ahmad A. Economic perspective of dementia care in Pakistan. Neurology 2018; 90: e993-e994.
12. Finder VH, Glockshuber R. Amyloid-β aggregation. Neurodegener Dis 2007; 4: 13-27.
13. Carr D, Goate A, Phil D, Morris J. Current concepts in the pathogenesis of Alzheimer’s disease. Am J Med 1997; 103: 3S-10S.
14. Deng Y, Xiong Z, Chen P, Wei J, Chen S, Yan Z. β-Amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3. Neurobiol Aging 2014; 35: 449-459.
15. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 2016; 139: 179-197.
16. Prolla TA, Mattson MP. Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 2001; 24: 21-31.
17. Schemmert S, Schartmann E, Zafiu C, Kass B, Hartwig S, Lehr S, et al. Aβ oligomer elimination restores cognition in transgenic Alzheimer’s mice with full-blown pathology. Mol Neurobiol 2019; 56: 2211-2223.
18. Hailwood JM, Heath CJ, Phillips BU, Robbins TW, Saksida LM, Bussey TJ. Blockade of muscarinic acetylcholine receptors facilitates motivated behaviour and rescues a model of antipsychotic-induced amotivation. Neuropsychopharmacology 2019; 44: 1068-1075.
19. Buccafusco JJ. The revival of scopolamine reversal for the assessment of cognition-enhancing drugs. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011.
20. Guo J, Zhang R, Ouyang J, Zhang F, Qin F, Liu G, et al. Stereodivergent synthesis of carveol and dihydrocarveol through ketoreductases/ene‐reductases catalyzed asymmetric reduction. ChemCatChem 2018; 10: 5496-5504.
21. De Carvalho CC, Da Fonseca MMR. Carvone: Why and how should one bother to produce this terpene. Food Chem 2006; 95: 413-422.
22. Agrahari P, Singh DK. A review on the pharmacological aspects of Carum carvi. J Biol Earth Sci 2014; 4: 1-13.
23. Ahmed MS, Khan A-u, Kury LTA, Shah FA. Computational and pharmacological evaluation of carveol for antidiabetic potential. Front Pharmacol 2020; 11: 919.
24. Adamson MM, Shakil S, Sultana T, Hasan MA, Mubarak F, Enam SA, et al. Brain injury and dementia in Pakistan: current perspectives. Front Pharmacol 2020; 11: 299-306.
25. Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci 2015;36: 553-560.
26. Hritcu L, Cioanca O, Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine 2012; 19: 529-534.
27. Condon ME, Petrillo Jr EW, Ryono DE, Reid JA, Neubeck R, Puar M, et al. Angiotensin-converting enzyme inhibitors: importance of the amide carbonyl of mercaptoacyl amino acids for hydrogen bonding to the enzyme. J Med Chem 1982; 25: 250-258.
28. Latif K, Khan A-u, Izhar Ul Haque M, Naeem K. Bergapten attenuates nitroglycerin-induced migraine headaches through inhibition of oxidative stress and inflammatory mediators. ACS Chem Neurosci 2021;12: 3303-3313.
29. Shah FA, Zeb A, Ali T, Muhammad T, Faheem M, Alam SI, et al. Identification of proteins differentially expressed in the striatum by melatonin in a middle cerebral artery occlusion rat model—a proteomic and in silico approach. Front Neurosci 2018; 12: 888-902.
30. Malik I, Shah FA, Ali T, Tan Z, Alattar A, Ullah N, et al. Potent natural anti-oxidant carveol attenuates MCAO-stress induced oxidative, neurodegeneration by regulating the Nrf-2 pathway. Front Neurosci 2020; 14: 659-674.
31. Ala M, Ghasemi M, Mohammad Jafari R, Dehpour AR. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review. Drug Dev Res 2021; 82: 896-906.
32. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34: 1307-1350.
33. El-Sherbiny DA, Khalifa AE, Attia AS, Eldenshary EE- DS. Hypericum perforatum extract demonstrates anti-oxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol Biochem Behav 2003; 76: 525-533.
34. Sharma D, Puri M, Tiwary AK, Singh N, Jaggi AS. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J Pharmacol 2010; 42: 164-167.
35. Oh JH, Choi BJ, Chang MS, Park SK. Nelumbo nucifera semen extract improves memory in rats with scopolamine-induced amnesia through the induction of choline acetyltransferase expression. Neurosci Lett 2009; 461: 41-44.
36. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 1998; 4: 97-100.
37. Lelong V, Lhonneur L, Dauphin F, Boulouard M. BIMU 1 and RS 67333, two 5-HT 4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse. Naunyn- Schmiedebergs Arch Pharmacol 2003; 367: 621-628.
38. Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D‐ galactose‐induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF‐KB/JNK signaling pathway in aging mouse model. J Pineal Res 2015; 58: 71-85.
39. Niikura T, Tajima H, Kita Y. Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 2006; 4: 139-147.
40. Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L, Gray F, et al. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim Biophys Acta 2012; 1822: 885-896.
41. Li J, Li W, Jiang Z-G, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14: 24438-24475.
42. Agostinho P, A Cunha R, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 2010; 16: 2766-2278.
43. Manral A, Meena P, Saini V, Siraj F, Shalini S, Tiwari M. DADS analogues ameliorated the cognitive impairments of Alzheimer- like rat model induced by scopolamine. Neurotox Res 2016; 30: 407-426.
44. Chen W, Cheng X, Chen J, Yi X, Nie D, Sun X, et al. Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS One 2014; 9: e88076.
45. Lee J-S, Kim H-G, Lee H-W, Han J-M, Lee S-K, Kim D-W, et al. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci Rep 2015; 5: 1-10.
46. González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 2017; 10: 427-446.
47. Rosales‐Corral SA, Acuña‐Castroviejo D, Coto‐Montes A, Boga JA, Manchester LC, Fuentes‐Broto L, et al. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52: 167-202.
48. Wang W-Y, Tan M-S, Yu J-T, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3: 136.
49. Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, et al. Gx‐50 reduces β‐amyloid‐induced TNF‐α, IL‐1β, NO, and PGE2 expression and inhibits NF‐κB signaling in a mouse model of Alzheimer’s disease. Eur J Immunol 2016; 46: 665-676.
50. Li Q, Wu Y, Chen J, Xuan A, Wang X. Microglia and immunotherapy in Alzheimer’s disease. Acta Neurol Scand 2022; 145: 273-278.
51. Yang S-H. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. Int Neurourol J 2019; 23: S54.