Highly porous bio-glass scaffolds fabricated by polyurethane template method with hydrothermal treatment for tissue engineering uses

Document Type : Original Article


1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93885, Iran

2 Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran

3 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 1316943551, Iran


Objective(s): Bioglass scaffolds, which contain a significant percentage of porosity for tissue engineering purposes, have low strength. For increasing the strength and efficiency of such structures for use in tissue engineering, fabrication of hierarchical meso/macro-porous bioglass scaffolds, developing their mechanical strength by hydrothermal treatment and adjusting pH method, and achieving the appropriate mesopore size for loading large biomolecules, were considered in this study.
Materials and Methods: Mesoporous bioglass (MBG) powders were synthesized using cetyltrimethylammonium bromide as a surfactant, with different amounts of calcium sources to obtain the appropriate size of the mesoporous scaffolds. Then MBG scaffolds were fabricated by a polyurethane foam templating method, and for increasing scaffold strength hydrothermal treatment (90 °C, for 5 days) and adjustment pH (pH=9) method was used to obtain hierarchical meso/macro-porous structures. The sample characterization was done by Simultaneous thermal analysis, Fourier transform infrared spectroscopy, Field Emission Scanning electron microscopy, small and wide-angle X-ray powder diffractions, transmission electron microscopy, and analysis of nitrogen adsorption-desorption isotherm. The mechanical strength of scaffolds was also determined.
Results: The MBG scaffolds based on 80.28 (wt.) % SiO2- 17.89 (wt.) % CaO- 1.81 (wt.) % P2O5 presented interconnected large pores and pores in the range of 100-150 μm and 6-18 nm, respectively and 0.4 MPa compressive strength. 
Conclusion: The total pore volume and specific surface area were obtained from the Brunauer-Emmett-Teller theory, 0.709 cm3 g-1 and 213.83 m2 g-1, respectively. These findings could be considered in bone-cartilage tissue engineering.


1. El-Fiqi A, Kim TH, Kim M, Eltohamy M, Won JE, Lee EJ, et al. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale 2012; 4: 7475-7488. 
2. Prokopowicz M, Czarnobaj K, Szewczyk A, Sawicki W. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications.  Mater Sci Eng C Mater Biol Appl 2016; 60: 7-18. 
3. Wu C, Zhou Y, Chang J, Xiao Y. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater 2013; 9: 9159-9168. 
4. Zhang Y, Cheng N, Miron R, Shi B, Cheng X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 2012; 33: 6698-6708. 
5. Polo L, Gómez-Cerezo N, Aznar E, Vivancos JL, Sancenón F, Arcos D, et al. Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater 2017; 50: 114-126. 
6. Lalzawmliana V, Anand A, Roy M, Kundu B, Nandi SK. Mesoporous bioactive glasses for bone healing and biomolecules delivery.  Mater Sci Eng C Mater Biol Appl 2020;106: 110180. 
7. Reiter T, Panick T, Schuhladen K, Roether JA, Hum J, Boccaccini AR. Bioactive glass based scaffolds coated with gelatin for the sustained release of icariin. Bioact Mater 2019; 4: 1-7. 
8. Shoaib M, ur Rahman MS, Saeed A, Naseer MM. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery. Colloids Surfaces B Biointerfaces 2018; 172: 806-811. 
9. Xie P, Du J, Li Y, Wu J, He H, Jiang X, et al. Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids Surfaces B Biointerfaces 2019; 178: 22-31. 
10. Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects defects. Artif Cells, Nanomedicine Biotechnol 2018; 46:1935-1947. 
11. Hum J, Philippart A, Boccardi E, Boccaccini AR. Mesoporous Bioactive Glass-Based Controlled Release Systems. In: Inorganic Controlled Release Technology. 2016.p.139-159. 
12. Hum J, Boccaccini AR. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: A review.  J Mater Sci Mater Med 2012; 23: 2317-2333. 
13. Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: Where are we and where are we going?  J Funct Biomater 2018;9:25. 
14. Wang X, Chen W, Liu Q, Liu L. Genistein adsorbed mesoporous bioactive glass with enhanced osteogenesis properties. Biotechnol Lett 2020; 42:321-328. 
15. Son SA, Kim DH, Yoo KH, Yoon SY, Kim Y Il. Mesoporous bioactive glass combined with graphene oxide quantum dot as a new material for a new treatment option for dentin hypersensitivity. Nanomaterials 2020; 10: 621. 
16. Gómez-Cerezo MN, Peña J, Ivanovski S, Arcos D, Vallet-Regí M, Vaquette C. Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration.  Mater Sci Eng C Mater Biol Appl 2021; 120:111706. 
17. Ghaebi Panah N, Alizadeh P, Eftekhari Yekta B, Motakef-Kazemi N. Preparation and in-vitro characterization of electrospun bioactive glass nanotubes as mesoporous carriers for ibuprofen. Ceram Int 2016; 42: 10935-10942. 
18. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016; 32: 309-323. 
19. Xia W, Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non Cryst Solids 2008; 354: 1338-1341. 
20. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 335-341. 
21. Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc 1991; 74: 1487-1510. 
22. Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee BT. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration.  Mater Sci Eng C Mater Biol Appl 2019; 103: 109775. 
23. El-Sayed SAM, Mabrouk M, Khallaf ME, Abd El-Hady BM, El-Meliegy E, Shehata MR. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J Drug Deliv Sci Technol 2020; 57: 101757. 
24. Lin Q, Zhang X, Wang W, Li S, Li J, Hao L. The structural evolution of Bioglass after implantation in the femoral defects. J Non Cryst Solids 2021; 552: 120439. 
25. Xia L, Zeng D, Sun X, Xu Y, Xu L, Ye D, et al. Engineering of bone using rhBMP-2-loaded mesoporous silica bioglass and bone marrow stromal cells for oromaxillofacial bone regeneration. Microporous Mesoporous Mater 2013; 173: 155-165. 
26. Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C. Bioactive glasses: Special applications outside the skeletal system. J Non Cryst Solids 2016; 432: 15-30. 
27. Luo H, Xiao J, Peng M, Zhang Q, Yang Z, Si H, et al. One-pot synthesis of copper-doped mesoporous bioglass towards multifunctional 3D nanofibrous scaffolds for bone regeneration. J Non Cryst Solids 2020; 532: 119856. 
28. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities.  Angew Chem Int Ed Engl 2004; 43: 5980-5984. 
29. Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, et al. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials 2009; 30:2199-2208. 
30. Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: Physiochemistry and in vivo osteogenesis. Acta Biomater 2011; 7: 2229-2236. 
31. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. J Control Release 2006; 110: 522-530. 
32. Sun J, Li Y, Li L, Zhao W, Li L, Gao J, et al. Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J Non Cryst Solids 2008; 354: 3799-3805. 
33. Alothman ZA. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012; 5: 2874-2902. 
34. Limongi T, Susa F, Allione M, Fabrizio E Di. Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics. 2020; 12: 851. 
35. Ren L, Zhang Z, Deng C, Zhang N, Li D. Antibacterial and pro-osteogenic effects of p-defensin-2-loaded mesoporous bioglass. Dent Mater J 2021; 40: 464-471. 
36. Vaid C, Murugavel S, Das C, Asokan S. Mesoporous bioactive glass and glass-ceramics: Influence of the local structure on in vitro bioactivity. Microporous Mesoporous Mater 2014; 186:46-56. 
37. Izquierdo-Barba I, Manzano M, Colilla M, Vallet-Regí M. Silica-based ordered mesoporous materials for biomedical applications. Key Eng Mater 2008; 377: 133-150. 
38. Liang Q, Hu Q, Miao G, Yuan B, Chen X. A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Mater Lett 2015; 148: 45-49. 
39. Hu Q, Li Y, Zhao N, Ning C, Chen X. Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Mater Lett 2014; 134: 130-133. 
40. Zhao S, Li Y, Li D. Synthesis and in vitro bioactivity of CaO-SiO2-P 2O5 mesoporous microspheres. Microporous Mesoporous Mater 2010; 135: 67-73. 
41. Sun M, Chen C, Chen L, Su B. Hierarchically porous materials: Synthesis strategies and emerging applications. Front Chem Sci Eng 2016;10: 341-347. 
42. Shih CJ, Chen HT, Huang LF, Lu PS, Chang HF, Chang IL. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds. Mater Sci Eng C 2010; 30: 657-663. 
43. Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, et al. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater 2008; 112: 494-503. 
44. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 2006; 27: 2414-2425. 
45. Gómez-Cerezo MN, Lozano D, Arcos D, Vallet-Regí M, Vaquette C. The effect of biomimetic mineralization of 3D-printed mesoporous bioglass scaffolds on physical properties and in vitro osteogenicity. Mater Sci Eng C Mater Biol Appl 2020;109:110572. 
46. Wang X, Liu Q, Chen W, Liu L. FGF adsorbed mesoporous bioactive glass with larger pores in enhancing bone tissue engineering. J Mater Sci Mater Med 2019; 30: 48. 
47. Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249: 272-289. 
48. Li X, Wang X, Chen H, Jiang P, Dong X, Shi J. Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 cotemplated approach. Chem Mater 2007; 19:4322-4326. 
49. Boccardi E, Philippart A, Melli V, Altomare L, De Nardo L, Novajra G, et al. Bioactivity and mechanical stability of 45S5 bioactive glass scaffolds based on natural marine sponges. Ann Biomed Eng 2016; 44: 1881-1893. 
50. Mohamad Yunos D, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mat Sci 2008; 43: 4433–4442. 
51. Mirhadi SM, Hassanzadeh Nemati N, Tavangarian F, Daliri Joupari M. Fabrication of hierarchical meso/macroporous TiO2 scaffolds by evaporation-induced self-assembly technique for bone tissue engineering applications. Mater Charact 2018; 144:35-41. 
52. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 2004; 68: 105-109. 
53. Manzano M, Vallet-Regí M. New developments in ordered mesoporous materials for drug delivery. J Mater Chem 2010; 20: 5593-5604. 
54. Coleman NJ, Hench LL. Gel-derived mesoporous silica reference material for surface analysis by gas sorption 1. Textural features. Ceram Int 2000; 26: 171-178.