High frequency of carbapenem-resistant Enterobacteriaceae fecal carriage among ICU hospitalized patients from Southern Iran

Document Type : Original Article


1 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran

4 Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran


Objective(s): The worldwide emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major therapeutic concern to medical institutions. To date, no study has determined the frequency and risk factors of inpatients with CRE fecal carriage in Southern Iran. We studied the features of carbapenemase-producing Enterobacteriaceae (CPE) collected from the central ICU of a university hospital.
Materials and Methods: Totally, 173 samples, including 124 stool samples from 46 ICU inpatients on admission and different follow-ups, 9 ICU staff, and 40 environmental samples were included. CRE was identified using microbiological methods. Antimicrobial susceptibility was investigated by using the disk diffusion method and E-test. Carbapenemase producers were detected using the mCIM method. Seven carbapenemase genes were characterized. The genetic relationship among 20 CPE was elucidated by PFGE. 
Results: The overall fecal carriage rate was 28.2%, while CRE acquisition was 6.1%. CRE were classified as Klebsiella pneumoniae (71.4%), Escherichia coli (23.8%), and Enterobacter aerogenes (4.8%). From 21 CRE, 20 (95.2%) produced carbapenemases, of which 10, 15, 10, 25, 5, and 65% were blaKPC, blaSME, blaIMP, blaVIM, blaNDM and blaOXA-48-positive, respectively. Out of 20 CPE, 14 different PFGE patterns were observed, categorized into six clusters, suggestive of non-clonal spread. No difference between the examined risk factors with CRE carriage was shown. 
Conclusion: The data indicate a high CRE fecal carriage rate among inpatients. Our findings implicate the widespread of OXA-48 carbapenemase together with heterogeneity among CRE with great concern for dissemination and therapeutic threat. Early diagnosis and monitoring of CRE among inpatients are urgent. 


1. Asai N, Sakanashi D, Suematsu H, Kato H, Hagihara M, Nishiyama N, et al. The epidemiology and risk factor of carbapenem-resistant enterobacteriaceae colonization and infections: Case control study in a single institute in Japan. J Infect Chemother 2018; 24: 505-509.
2. Miao M, Wen H, Xu P, Niu S, Lv J, Xie X, et al. Genetic diversity of carbapenem-resistant Enterobacteriaceae (CRE) clinical isolates from a tertiary hospital in Eastern China. Front Microbiol 2019; 9: 1-8.
3. Shettima SA, Tickler IA, dela Cruz CM, Tenover FC. Characterisation of carbapenem-resistant Gram-negative organisms from clinical specimens in Yola, Nigeria. J Glob Antimicrob Resist 2020; 21: 42-45. 
4. Jamali S, Tavakoly T, Mojtahedi A, Shenagari M. The phylogenetic relatedness of bla (NDM-1) harboring extended-spectrum β-Lactamase producing uropathogenic Escherichia coli and Klebsiella pneumoniae in the North of Iran. Infect Drug Resist. 2020; 13: 651-657. 
5. Zaidah AR, Mohammad NI, Suraiya S, Harun A. High burden of Carbapenem-resistant Enterobacteriaceae (CRE) fecal carriage at a teaching hospital: Cost-effectiveness of screening in low-resource setting. Antimicrob Resist Infect Control. 2017; 6: 1-6.
6. Zhao Z-c, Xu X-h, Liu M-b, Wu J, Lin J, Li B. Fecal carriage of carbapenem-resistant Enterobacteriaceae in a Chinese university hospital. Am J Infect Control 2014; 42: e61-e64. 
7. AlTamimi M, AlSalamah A, AlKhulaifi M, AlAjlan H. Comparison of phenotypic and PCR methods for detection of carbapenemases production by Enterobacteriaceae. Saudi J Biol Sci 2017; 24: 155-161. 
8. Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob 2016; 15: 20-30. 
9. Lee JH, Bae IK, Lee CH, Jeong S. Molecular characteristics of first IMP-4-producing Enterobacter cloacae sequence type 74 and 194 in Korea. Front Microbiol 2017; 8: 2343.
10. Hagiya H, Yamamoto N, Kawahara R, Akeda Y, Shanmugakani RK, Ueda A, et al. Risk factors for fecal carriage of IMP-6-producing Enterobacteriaceae at a long-term care hospital in Japan: A follow-up report from the northern Osaka multicentre study group. J Infect Chemother 2018; 24: 769-772. 
11. Salomão MC, Guimarães T, Duailibi DF, Perondi MBM, Letaif LSH, Montal AC, et al. Carbapenem-resistant Enterobacteriaceae in patients admitted to the emergency department: prevalence, risk factors, and acquisition rate. J Hosp Infect 2017; 97: 241-246. 
12. Yan Z, Zhou Y, Du M, Bai Y, Liu B, Gong M, et al. Prospective investigation of carbapenem-resistant Klebsiella pneumoniae transmission among the staff, environment and patients in five major intensive care units, Beijing. J Hosp Infect 2019; 101: 150-157. 
13. Kim J, Lee JY, Kim SI, Song W, Kim J-S, Jung S, et al. Rates of fecal transmission of extended-spectrum β-lactamase-producing and carbapenem-resistant Enterobacteriaceae among patients in intensive care units in Korea. Ann Lab Med 2014; 34: 20-25. 
14. Lolans K, Calvert K, Won S, Clark J, Hayden MK. Direct ertapenem disk screening method for identification of KPC-producing Klebsiella pneumoniae and Escherichia coli in surveillance swab specimens. J Clin Microbiol 2010; 48: 836-841. 
15. Adler A, Navon-Venezia S, Moran-Gilad J, Marcos E, Schwartz D, Carmeli Y. Laboratory and clinical evaluation of screening agar plates for detection of carbapenem-resistant Enterobacteriaceae from surveillance rectal swabs. J Clin Microbiol. 2011; 49: 2239-2242. 
16. Moran Gilad J, Carmeli Y, Schwartz D, Navon-Venezia S. Laboratory evaluation of the CHROMagar KPC medium for identification of carbapenem-nonsusceptible Enterobacteriaceae. Diagnostic Microbiol Infect Dis 2011; 70: 565-567. 
17. Wayne P. Performance standards for antimicrobial susceptibility testing; 29th informational supplement. CLSI document M100-S29. Maryland, USA: Clinical and Laboratory Standards Institute 2019.
18. Rosa JF, Rizek C, Marchi AP, Guimaraes T, Miranda L, Carrilho C, et al. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil. BMC Microbiol 2017; 17: 69. 
19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-281. 
20. Gajamer VR, Bhattacharjee A, Paul D, Ingti B, Sarkar A, Kapil J, et al. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J Glob Antimicrob Resist 2020; 20: 197-203. 
21. Wang T-H, Leu Y-S, Wang N-Y, Liu C-P, Yan T-R. Prevalence of different carbapenemase genes among carbapenem-resistant Acinetobacter baumannii blood isolates in Taiwan. Antimicrob Resist Infect Control 2018; 7: 123-130. 
22. Hong SS, Kim K, Huh JY, Jung B, Kang MS, Hong SG. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med 2012; 32: 359-361. 
23. Monteiro J, Widen RH, Pignatari ACC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother 2012; 67: 906-909. 
24. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 2012; 50: 3877-3880. 
25. Ribeiro PCS, Monteiro AS, Marques SG, Monteiro SG, Monteiro-Neto V, Coqueiro MMM, et al. Phenotypic and molecular detection of the blaKPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil. BMC Infect Dis 2016; 16:737.
26. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 2233-2239. 
27. Pollett S, Miller S, Hindler J, Uslan D, Carvalho M, Humphries R. Phenotypic and molecular characteristics of carbapenem-resistant Enterobacteriaceae in a health care system in Los Angeles, California, from 2011 to 2013. J Clin Microbiol 2014; 52: 4003-4009.
28. Ece G, Tunc E, Otlu B, Aslan D, Ece C. Detection of blaOXA-48 and clonal relationship in carbapenem resistant K. pneumoniae isolates at a tertiary care center in Western Turkey. J  Infect Public Health 2018;11: 640-642.
29. Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. Eur J Clin Microbiol Infect Dis 2017; 36: 2127-2135. 
30. Lerner A, Romano J, Chmelnitsky I, Navon-Venezia S, Edgar R, Carmeli Y. Rectal swabs are suitable for quantifying the carriage load of KPC-producing carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2013; 57: 1474-1479. 
31. Wiener-Well Y, Rudensky B, Yinnon AM, Kopuit P, Schlesinger Y, Broide E, et al. Carriage rate of carbapenem-resistant Klebsiella pneumoniae in hospitalised patients during a national outbreak. J Hosp Infect 2010;74: 344-349. 
32. Yamamoto N, Asada R, Kawahara R, Hagiya H, Akeda Y, Shanmugakani RK, et al. Prevalence of, and risk factors for, carriage of carbapenem-resistant Enterobacteriaceae among hospitalized patients in Japan. J Hosp Infect 2017; 97: 212-217. 
33. Girlich D, Bouihat N, Poirel L, Benouda A, Nordmann P. High rate of faecal carriage of extended-spectrum β-lactamase and OXA-48 carbapenemase-producing Enterobacteriaceae at a University hospital in Morocco. Clin Microbiol Infect 2014;20: 350-354. 
34. Day KM, Ali S, Mirza IA, Sidjabat HE, Silvey A, Lanyon CV, et al. Prevalence and molecular characterization of Enterobacteriaceae producing NDM-1 carbapenemase at a military hospital in Pakistan and evaluation of two chromogenic media. Diagn Microbiol Infect Dis 2013; 75: 187-191. 
35. Arana DM, Ortega A, González-Barberá E, Lara N, Bautista V, Gómez-Ruíz D, et al. Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2. J Antimicrob Chemother 2017; 72: 3283-3287. 
36. Chen C-W, Tang H-J, Chen C-C, Lu Y-C, Chen H-J, Su B-A, et al. The microbiological characteristics of carbapenem-resistant Enterobacteriaceae carrying the mcr-1 gene. J Clin Med 2019; 8: 261.
37. Solgi H, Nematzadeh S, Giske CG, Badmasti F, Westerlund F, Lin Y-L, et al. Molecular epidemiology of OXA-48 and NDM-1 producing enterobacterales species at a University Hospital in Tehran, Iran, between 2015 and 2016. Front Microbiol 2020; 11: 1-13. 
38. Weber DJ, Rutala WA, Kanamori H, Gergen MF, Sickbert-Bennett EE. Carbapenem-resistant Enterobacteriaceae: frequency of hospital room contamination and survival on various inoculated surfaces. Infect Control Hosp Epidemiol 2015; 36: 590-593.  
39. Haghighatpanah M, Mojtahedi A. Characterization of antibiotic resistance and virulence factors of Escherichia coli strains isolated from Iranian inpatients with urinary tract infections. Infect Drug Resist 2019; 12: 2747.
40. Fursova NK, Astashkin EI, Knyazeva AI, Kartsev NN, Leonova ES, Ershova ON, et al. The spread of blaOXA-48 and blaOXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann Clin Microbiol Antimicrob 2015; 14: 46. 
41. Karaaslan A, Soysal A, Altinkanat Gelmez G, Kepenekli Kadayifci E, Söyletir G, Bakir M. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: Emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect 2016; 92: 67-72.
42. Dagher C, Salloum T, Alousi S, Arabaghian H, Araj GF, Tokajian S. Molecular characterization of carbapenem resistant Escherichia coli recovered from a tertiary hospital in Lebanon. PLoS One 2018; 13: e0203323.
43. Bedenić B, Sardelić S, Luxner J, Bošnjak Z, Varda-Brkić D, Lukić-Grlić A, et al. Molecular characterization of class D carbapenemases in advanced stage of dissemination and emergence of class d carbapenemases in Enterobacteriaceae from Croatia. Infection Genet Evol 2016; 43: 74-82.
44. Jayol A, Poirel L, Dortet L, Nordmann P. National survey of colistin resistance among carbapenemase-producing Enterobacteriaceae and outbreak caused by colistin-resistant OXA-48-producing Klebsiella pneumoniae, France, 2014. Euro surveill 2016; 21: 30339.
45. Jin C, Zhang J, Wang Q, Chen H, Wang X, Zhang Y, et al. Molecular characterization of carbapenem-resistant Enterobacter cloacae in 11 Chinese cities. Front Microbiol 2018; 9: 1-8.
46. Khashei R, Sarvestani FE, Malekzadegan Y, Motamedifar M. The first report of Enterobacter gergoviae carrying blaNDM-1 in Iran. Iran J Basic Med Sci 2020; 23:1184-1190. 
47. Cunha CB, Kassakian SZ, Chan R, Tenover FC, Ziakas P, Chapin KC, et al. Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. Am J Infect Control. 2016; 44: 126-130.