Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway

Document Type : Original Article


1 Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001

2 Department of Cardiology, the Harbin Medical University, Harbin, PR. China, 150001

3 Heilongjiang Provincial Hospital, Harbin, PR. China, 150001

4 Department of Geriatric Cardiology, Guangdong Provincial People’s Hospital. Guangzhou, PR. China, 510080


Objective(s): To investigate the effect of mogroside IIIE (MGIIIE) on isoproterenol (ISO)-induced myocardial fibrosis and explore its possible mechanisms.
Materials and Methods: Forty C57BL/6 male mice (6-8 weeks) were randomly divided into a control group (n=10), model group (n=10), low MGIIIE dose group (n=10), and high MGIIIE dose group (n=10). Myocardial fibrosis was established by subcutaneous ISO injection. After 2 weeks of continuous gastric administration of MGIIIE, the cardiac structure was evaluated by echocardiography. Myocardial inflammation and fibrosis were evaluated by histology examination. Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), p-IκBα, p-NF-κB, transforming growth factor β1 (TGF-β1), and α-smooth muscle actin (α-SMA) expression were detected by western blot. Inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum were examined by ELISA. In the in vitro study, Ang II (1 μmol/l) was used to stimulate the fibroblasts, then inflammation and fibrosis index were detected.
Results: MGIIIE inhibited inflammation and fibrosis and down-regulated TLR4, MyD88, TGF-β1, and α-SMA expression in the myocardium. In the in vitro study, MGIIIE ameliorates the deposition of Col Ш and Col I and decreases the release of inflammatory cytokines. MGIIIE increased p-IκBα and reduced p-NF-κB expression both in vivo and in vitro.
Conclusion: MGIIIE plays a role in anti-myocardial fibrosis, by inhibiting TLR4/MyD88/NF-κB signaling expression, and decreasing inflammatory cytokine release. MGIIIE may represent a novel therapeutic strategy for treating cardiac fibrosis.


1. Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106: 62-69.
2. Shen X, Ma YT, Yang YN, Liu F, Yu ZX, Chen BD, et al. Effects of different ages on ventricular remodeling after ischemic heart failure in mice. Chinese J Pathophysiol 2013; 29: 988-992. 
3. Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury-inflammation at the heart of cardaic fibrosis. Cell Signal 2021; 77: 109828.
4. Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious disease. Pharmaceutics 2021; 13: 142. 
5. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332: 16-30. 
6. Goel R, Eapen CE. Recognizing dysfunction innate and adaptive immune responses contributing to liver damage in patients with cirrhosis. J Clin Exp Hepatol 2022; 12: 993-1002. 
7. Guan B, Tong J, Hao H, Yang Z, Chen K, Xu H, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B 2022; 12: 2129-2149.
8. Jeong E, Lee JY. Intrinsic and extrinsic regulation of innate immune receptors. Yonsei Med J 2011; 52: 379-92. 
9. Behzadi P, García-Perdomo HA, Karpiński TM. Toll-like receptors: General molecular and structural biology. J Immunol Res 2021; 2021: 9914854.
10. Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100: 927-941. 
11. Zhang YG, Zhu X, Lu R, Messer JS, Xia Y, Chang EB, et al. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 2019; 15: 1935-1953. 
12. Tao LJ, Yang JY, Cao FY, Xie HF, Zhang M, Gong YQ, et al. Mogroside IIIE, a novel anti-fibrotic compound, reduces pulmonary fibrosis through Toll like receptor 4 pathways. J Pharmacol Exp Ther 2017; 361: 268-279.
Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020; 20: 95-112. 
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage polarization and its role in liver disease. Front Immunol 2021; 12: 803037.
15. Liu Y, Nong L, Jia Y, Tan A, Duan L, Lu Y, et al. Aspirin alleviates hepatic fiborsis by suppressing hepatic stellate cells activation via the TLR4/NF-κB pathway. Aging (Albany NY) 2020; 12: 6058-6066.
16. Liu M, Xu Y, Han X, Yin L, Xu L, Qi Y, et al. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci Rep 2015; 5: 18038. 
17. Wang PP, Xie DY, Liang XJ, Peng L, Zhang GL, Ye YN, et al. HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-κB pathway. PloS One 2012; 7: e43408.
18. National Pharmacopoeia Committee. A Pharmacopoeia of the people’s Republic of China. Bei Jing, China Medical Science and Technology Press, 2010.
19. Bin C, Fangming Y, Zhi J. Mogroside V-producing endophytic fungi isolated from siaitia grosvenorii. Planta Med 2020; 86: 983-987. 
20. Sung YY, Yuk HJ, Yang WK, Kim SH, Kim DS. Siraitia grosvenorii residual extract attenuates atopic dermatitis by regulating immune dysfunction and skin barrier abnormality. Nutrients 2020; 12: 3638. 
21. Liao J, Xie L, Shi H, Cui S, Lan F, Luo Z, et al. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases. Phytochemistry 2021; 189: 112824. 
22. Tao L, Yang J, Cao F, Xie H, Zhang M, Gong Y, et al. Mogroside IIIE, a novel anti-fibrotic compound, reduces pulmonary fibrosis through Toll-like receptor 4 pathways. J Pharmacol Exp Ther 2017; 361: 268-279.
23. Li M, Zhang J, Chen Y, Wang YQ. Inhibitory effect of salvia miltiorrhiza on myocardial hypertrophy and fibrosis induced by isoproterenol in mice and its mechanism. J China Pharmaceutic Univ 2003; 34: 565-568. 
24. Liu W, Chen J, Xu T, Tian W, Li Y, Zhang Z, et al. Qiliqiangxin improves cardaic function in spontaneously hypertensive rats through the inhibition of caraic chymase. Am J Hypertens 2012; 25: 250-260.
25. Elsadek BEM, Abdelghany AA, Abd El-Aziz MA, Madkor HR, Abd Elrady Ahmed A, et al. Validation of the diagnostic and prognostic values of ADAMTS5 and FSTL1 in osteoarithritis rat model. Cartilage 2021; 13: 1263S-1273S. 
26. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 2007; 13: 1324-1332. 
27. Liang J, Zhang Y, Xie T, Liu N, Chen H, Geng Y, et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med 2016; 22: 1285-1293.
28. Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7: 78.
29. Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases. J Inflamm Res 2022; 15: 3083-3094.
30. Wang M, Liu X, Wang Z, Xu Q. The extract of polygala fallax Hemsl slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro. Phytomedicine 2022; 104: 154251.
31. Yang Y, Lu J, Jiang S, Ma Z, Wang D, Hu W. The emerging role of toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016; 7: e2234.
32. Machino-Ohtsuka T, Tajiri K, Kimura T, Sakai S, Sato A, Yoshida T. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J Am Heart Assoc 2014; 3: e001052. 
33. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activatoin. Circulation 2002; 105: 1158e61.
34. Li M, Tan H, Gao T, Han L, Teng X, Wang F, et al. Gypensapogenin I ameliorates isoproterenol (ISO)-induced myocardial damage through regulating the TLR4/NF-κB/NLRP3 pathway. Molecules 2022; 27: 5298.
35. Oyama J, Blais JC, Liu X, Pu M, Kobzik L, Kelly RA. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 2004; 109: 784e9.
36. Han J, Zou C, Mei L, Zhang Y, Qian Y, You S, et al. MD2 mediates angiotensin II-induced cardiac inflammation and remodeling via directly binding to Ang II and activating TLR4/NK-κB signaling pathway. Basic Res Cardiol 2017; 112: 9.  
37. Wang M, Lu S, Zhao H, Liu Z, Sheng K, Fang J. Natural polysaccharides as potential anti-fibrotic agents: A review of their progress. Life Sci 2022; 308: 120953.
38. Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004; 16: 3-9.
39. Pereira M, Durso DF, Bryant CE, Kurt-Jones EA, Silverman N, Golenbock DT, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. Cell Rep 2022; 40: 111225.
40. Cao LX, Lin SJ, Zhao SS, Wang SQ, Zeng H, Chen WA, et al. Effects of acupuncture on mmicroglial polarization and the TLR4/TRIF/MyD88 pathway in a rat model of traumatic brain injury. Acupunct Med 2022: 9645284221108214.
41. Rosini AM, Teixeira SC, Milian ICB, Silva RJ, de Souza G, Luz LC, et al. LPS-mediated activation of TLR4 controls Toxoplasma gondii growth in human trophoblast cell (BeWo) and human villous explants in a dependent-manner of TRIF, MyD88, NF-κB and cytokines. Tissue Cell 2022; 78: 101907.
42. Matissek SJ, Karbalivand M, Han W, Boutilier A, Yzar-Garcia E, Kehoe LL, et al. A novel mechanism of regulation of the oncogenic transcription factor GLI3 by toll-like receptor signaling. Oncotarget 2022; 13: 944-959.
43. Yang D, Dai X, Xing Y, Tang X, Yang G, Harrison AG, et al. Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction. Commun Biol 2022; 5: 96. 
44. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11: 9115-9122. 
45. McGhan LJ, Jarsozewski DE. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury 2012; 43: 129-136. 
46. Pereira M, Durso DF, Bryant CE, Kurt-Jones EA, Silverman N, Golenbock DT, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. Cell Rep 2022; 40: 111225. 
47. Zhang R, Liu Q, Guo R, Zhang D, Chen Y, Li G, et al. Selenium deficiency induces autophagy in chicken bursa of fabricius through ChTLR4/MyD88/NF-κB pathway. Biol Trace Elem Res 2022; 200: 3303-3314. 
48. Wang M, Qi Y, Cao Y, Zhang X, Wang Y, Liu Q, et al. Domain fusion TLR2-4 enhances the autophagy-dependent clearance of Staphylococcus aureus in the genetic engineering goat. Elife 2022; 11: e78044.
49. Wu Z, Mehrabi Nasab E, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-κB signaling pathway. J Transl Med 2022; 20: 130.  
50. Liu Y, Zhao C, Meng J, Li N, Xu Z, Liu X, et al. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-κB in experimental autoimmune uveitis. Clin Immunol 2022; 236: 108939. 
51. Tian B, Ma X, Jiang R. Daphnetin mitigates ovalbumin-induced allergic rhinitis in mice by regulating Nrf2/HO-1 and TLR4/NF-κB signaling. Am J Rhinol Allergy 2022: 19458924221124363.  
52. Hu X, Hong B, Sun M. PeituSehngjin recipe attenuates airway inflammation via the TLR4/NF-κB signaling pathway on chronic obstructive pulmonary disease. Evid Based Complement Alternat Med 2022; 2022: 2090478. 
53. Wang K, You S, Hu H, Li X, Yin J, Shi Y, et al. Effects of TLR4/MyD88/NF-κB axis in paraventricular nucleus on ventricular arrhythmias induced by sympathetic hyperexcitation in post-myocardial infarction rats. J Cell Mol Med 2022; 26: 2959-2971. 
54. Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol 2020; 82: 63-78.
55. Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular signaling of cardiac fibroblasts. Compr Physiol 2015; 5: 721-60.
56. Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, et al. Asporin promotes TGF-β-induced lung myofibroblast differentiation by facilitating Rab11-dependent recycling of TβR1. Am J Respir Cell Mol Biol 2022; 66: 158-170.
57. Younesi FS, Son DO, Firmino J, Hinz B. Myofibroblast markers and microscopy detection methods in cell culture and histology. Methods Mol Biol 2021; 2299: 17-47.
58. Meng J, Zou Y, Chen J, Qin F, Chen X, Chen X, Dai S. sTLR4/sMD-2 complex alleviates LPS-induced acute lung injury by inhibiting pro-inflammatory cytokines and chemokine CXCL1 expression. Exp Ther Med 2018; 16: 4632-4638. 
59. Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Zoheir KM, Iqbal M, et al. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mine. Pharmacol Res 2015; 102: 1-11.