Impact of combined ischemic preconditioning and melatonin on renal ischemia-reperfusion injury in rats

Document Type : Original Article


1 Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt

2 Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt

3 Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt


Objective(s): Studying the effect of melatonin pretreatment and ischemic preconditioning on renal ischemia-reperfusion injury (IRI). 
Materials and Methods: Forty-eight Wistar rats were randomized into six groups: control, sham operation, IRI (IRI in left kidney + right nephrectomy), IRI+ischemic preconditioning, IRI+Melatonin, and IRI+ischemic preconditioning+Melatonin groups. Melatonin (10 mg/kg) was intraperitoneally injected for 4 weeks before renal IRI. Ischemic preconditioning was performed by three cycles of 2 min-ischemia followed by 5 min-reperfusion period. A right nephrectomy was initially done and the left renal artery was clamped for 45 min. After 24 hr of ischemia-reperfusion, rats were decapitated. Kidney tissue samples were taken for histopathological assessment and the determination of kidney proinflammatory and anti-inflammatory cytokines, apoptotic protein caspase-3, oxidative stress markers, and activities of antioxidant enzymes. Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for evaluation of renal function. 
Results: Renal IRI animals showed increased levels of creatinine, BUN, tumor necrosis factor-α (TNF-α), caspase-3, total nitrite/nitrate, and malondialdehyde (MDA), and decreased levels of interleukin-13 (IL-13), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). Melatonin pretreatment or ischemic preconditioning resulted in decreased creatinine, BUN, TNF-α, caspase-3, nitrite/nitrate, and MDA, and increased IL-13, GPx, and SOD, with improved histopathological changes. Combined melatonin and ischemic preconditioning showed more effective improvement in renal IRI changes rather than melatonin or ischemic preconditioning alone. 
Conclusion: Combined melatonin and ischemic preconditioning have better beneficial effects on renal IRI than applying each one alone. 


1.    Grinyo JM. Role of ischemia-reperfusion injury in the development of chronic renal allograft damage. Transplant Proc 2001; 33: 3741-42.
2.    Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med 1996; 334: 1448-1460.
3.    Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 33: 20313-20316. 
4.    Kao MPC, Ang DSC, Pall A, Struthers AD. Oxidative stress in renal dysfunction: Mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens 2010; 24: 1-8.
5.    Avery SV. Molecular targets of oxidative stress. Biochem J 2011; 434: 201-210. 
6.    Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: Induction, repair and significance. Mutat Res 2004; 567: 1-61.
7.    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation1986; 74: 1124-1136.
8.    Teoh N, Dela Pena A, Farrell G. Hepatic ischemic preconditioning in mice is associated with activation of NF-kappa B, p38 kinase, and cell cycle entry. Hepatology 2002; 36: 94-102.
9.    Shokeir AA, Hussein AM, Awadalla A, Samy A, Abdelaziz A, Khater S, et al. Protection against renal ischemia/reperfusion injury: a comparative experimental study of the impact of ischemic preconditioning versus postconditioning. Arab J Urol 2012; 10: 418-424. 
10.    Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004; 25:177-195.    
11.    Trivedi PP, Jena GB. Melatonin reduces ulcerative colitis- associated local and systemic damage in mice: Investigation on possible mechanisms. Dig Dis Sci 2013; 58: 3460-3474.
12.    Academies NRCoN. Guide for the Care and Use of Laboratory Animals, Eight Editioin. Washington: The national Academies Press 2011; 148: 881-883.
13.    Schermer S. Rats haemopoietic system in: Blood Morphology of Laboratory Animals. Chap. 10. Pbl. Davis. FA Co, Philadelphia 1968: 112.
14.    Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res 2002; 32: 173-178.
15.    Petrie A, Sabin C, Sugden M, Moore K. Medical statistics at a glance. 2nd ed: Blackwell Publishing Ltd, USA 2005; 55–56.
16.    Bussmann AR, Marton MA, Módolo MP, Módolo RP, Amado P, Domingues MA, et al. Effect of allopurinol on the kidney function, histology and injury biomarker (NGAL, IL 18) levels in uninephrectomised rats subjected to ischaemia-reperfusion injury. Acta Cir Bras 2014; 29: 515-521.
17.    Souza PC, Santos EB, Motta GL, Bona SR, Schaefer PG, Campagnol D, et al. Combined effects of melatonin and topical hypothermia on renal ischemia-reperfusion injury in rats. Acta Cir Bras 2018; 33: 197-206.
18.    Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res 2019; 11: 2887-2907.
19.    Stroo I, Stokman G, Teske GJ, Raven A, Butter LM, Florquin S, et al. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. Int Immunol 2010; 22: 433-442.
20.    Furuichi K, Wada T, Yokoyama H, Kobayashi K. Role of cytokines and chemokines in renal ischemia-reperfusion injury. Drug News Perspect 2002; 15: 477–482.
21.    Voss A, Bode G, Kerkhoff C. Double-Stranded RNA Induces IL-8 and MCP-1 Gene Expression via TLR3 in HaCaT-Keratinocytes. Inflammation & Allergy- Drug Targets (Formerly Current Drug Targets- Inflammation & Allergy). 2012; 11:397-405.
22.    Tuğtepe H, Şener G, Bıyıklı NK, Yüksel M, Çetinel Ş, Gedik N, et al. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats, Regul Pept 2007; 140: 101-108.
23.    Yang S, Chou WP, Pei L. Effects of propofol on renal ischemia/reperfusion injury in rats. Exp Ther Med 2013; 6: 1177-1183.
24.    Ren M, Wang X, Du G, Tian J, Liu Y. Calycosin‑7‑O‑β‑D‑glucoside attenuates ischemia-reperfusion injury in vivo via activation of the PI3K/Akt pathway. Mol Med Rep 2016; 13: 633-640. 
25.    Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2003; 138: 532-543.
26.    Gosling P. The metabolic and circulatory response to trauma. In: Alpar, E.K., Gosling, P. (eds). Trauma: A scientific basis for care. London: Arnold 1999; 9:57-66.
27.    Juan C. Mayo, Rosa M. Sainz, Dun-Xian Tan, Rüdiger Hardeland, Josefa Leon, Carmen Rodriguez, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine(AFMK) and N1-acetyl-5 methoxykynuramine (AMK) in macrophages. J Neuroimmunol 2005; 165: 139-149.
28.    Sener G, Sehirli AÖ, Keyer‐Uysal M, Arbak S, Ersoy Y, Yeğen BÇ. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res 2002; 32:120–126.
29.    Gulmen S, Kiris I, Narin C, Ceylan BG, Mermi B, Sutcu R, et al. Tezosentan reduces the renal injury induced by abdominal aortic ischemia-reperfusion in rats. J Surg Res 2009; 157:e7–13.
30.    Aboutaleb N, Jamali H, Abolhasani M, Toroudi HP. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis, . Biomed Pharmacother 2019; 110:9-19.
31.    Li Y, Hou D, Chen X, Zhu J, Zhang R, Sun W, et al. Hydralazine protects against renal ischemia-reperfusion injury in rats, Eur J Pharmacol 2019; 843: 199-209.
32.    Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, et al. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009; 46: 365-372.
33.    Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, et al. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 2001; 37:262-270.
34.    Sahna E, Parlakpinar H, Ozturk F, Cigremis Y, Acet A. The protective effects of physiological and pharmacological concentrations of melatonin on renal ischemia-reperfusion injury in rats. Urol Res 2003; 31:188-193.
35.    Reiter RJ, Tan DX, Osuna C, EloisaGitto RR. Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 2000; 7: 444- 458.
36.    Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci 2000; 917: 376-86.
37.    Kinsey GR, Huang L, Vergis AL, Li L, Okusa MD. Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int 2010; 77: 771-780.
38.    Chen H, Xing B, Liu X, Zhan B, Zhou J, Zhu H, et al. Ischemic postconditioning inhibits apoptosis after renal ischemia/reperfusion injury in rat. Transpl Int 2008; 21:364-371.
39.    Fan LH, He L, Cao ZQ, Xiang J, Liu L. Effect of ischemia preconditioning on renal ischemia/reperfusion injury in rats. Int Braz J Urol 2012; 38: 842-854.
40.    Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A1 and A3receptors. Am J Physiol Renal Physiol 2000; 278:380-387.
41.    Bo CJ, Chen B, Jia RP, Zhu JG, Cao P, Liu H, et al. Effects of ischemic preconditioning in the late phase on homing of endothelial progenitor cells in renal ischemia/reperfusion injury. Transplant Proc 2013; 45: 511-516. 
42.    Tossy NM, McMorris EL, Grase PA, Mathie RT. Ischemic preconditioning protects the rat kidney from reperfusion injury. BJU International 1999; 84: 489–494.