1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72:7-33.
2. Fernandes A, Shanmuganathan N, Branford S. Genomic mechanisms influencing outcome in chronic myeloid leukemia. Cancers (Basel) 2022; 14:620.-624
3. Sumi K, Tago K, Nakazawa Y, Takahashi K, Ohe T, Mashino T, et al. Novel mechanism by a bis-pyridinium fullerene derivative to induce apoptosis by enhancing the MEK-ERK pathway in a reactive oxygen species-independent manner in BCR-ABL-positive chronic myeloid leukemia-derived K562 cells. Int J Mol Sci 2022; 23:749-753.
4. Sampaio MM, Santos MLC, Marques HS, Goncalves VLS, Araujo GRL, Lopes LW, et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94.
5. Amarante-Mendes GP, Rana A, Datoguia TS, Hamerschlak N, Brumatti G. BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics 2022; 14:215-219.
6. Kayabasi C, Caner A, Yilmaz Susluer S, Balci Okcanoglu T, Ozmen Yelken B, Asik A, et al. Comparative expression analysis of dasatinib and ponatinib-regulated lncRNAs in chronic myeloid leukemia and their network analysis. Med Oncol 2022; 39:1-13.
7. De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming resistance to kinase inhibitors: the paradigm of chronic myeloid leukemia. Onco Targets Ther 2022; 15:103-116.
8. Chandrasekhar C, Kumar PS, Sarma P. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep 2019; 9:2412-2417.
9. Jang B, Kwon H, Katila P, Lee SJ, Lee H. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv Drug Deliv Rev 2016; 98:113-133.
10. Wang S, Liu X, Wang S, Ouyang L, Li H, Ding J, et al. Imatinib co-loaded targeted realgar nanocrystal for synergistic therapy of chronic myeloid leukemia. J Control Release 2021; 338:190-200.
11. Oaxaca DM, Yang-Reid SA, Ross JA, Rodriguez G, Staniswalis JG, Kirken RA. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment. Tumour Biol 2016; 37:12643-12654.
12. Wei Y, To KK, Au-Yeung SC. Synergistic cytotoxicity from combination of imatinib and platinum-based anticancer drugs specifically in Bcr-Abl positive leukemia cells. J Pharmacol Sci 2015; 129:210-215.
13. Zhou W, Zhu W, Ma L, Xiao F, Qian W. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein. Oncol Lett 2015; 10:2899-2904.
14. La Rosee P, O’Dwyer M, Druker B. Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 2002; 16:1213-1219.
15. Dharmapuri G, Doneti R, Philip GH, Kalle AM. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res 2015; 39:696-701.
16. Jin Y, Yao Y, Chen L, Zhu X, Jin B, Shen Y, et al. Depletion of γ-catenin by histone deacetylase inhibition confers elimination of CML stem cells in combination with imatinib. Theranostics 2016; 6:1947-1952.
17. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother 2020; 121:109604-109609.
18. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci 2019; 20:3177-3180.
19. Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 2020; 10:1-17.
20. Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo. Oncol Rep 2017; 38:819-828.
21. Ren KW, Li YH, Wu G, Ren JZ, Lu HB, Li ZM, et al. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol 2017; 50:1299-1311.
22. Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/beta-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019; 52:117-128.
23. Rahaiee S, Assadpour E, Faridi Esfanjani A, Silva AS, Jafari SM. Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci 2020; 279:102153-102156.
24. Barakat H. Amygdalin as a plant-based bioactive constituent: a mini-review on intervention with gut microbiota, anticancer mechanisms, bioavailability, and microencapsulation. Proceedings 2020; 61:15-19.
25. Avramovic N, Mandic B, Savic-Radojevic A, Simic T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 2020; 12:298-304.
26. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C Mater Biol Appl 2021; 118:111526-111530.
27. Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int J Biol Macromol 2021; 179:125-135.
28. Agarwal M, Agarwal MK, Shrivastav N, Pandey S, Das R, Gaur P. Preparation of chitosan nanoparticles and their in-vitro characterization. Int J Life Sci Scienti Res 2018; 4:1713-1720.
29. Yang L, Li D, Tang P, Zuo Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol Lett 2020; 19:83-92.
30. Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, et al. mRNA expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 cell line following induction by a novel monoclonal Ab Hep88 mAb: cross-talk for paraptosis and apoptosis. Asian Pac J Cancer Prev 2016; 17:703-712.
31. Zhou H, Zhou M, Hu Y, Limpanon Y, Ma Y, Huang P, et al. TNF-alpha triggers RIP1/FADD/Caspase-8-mediated apoptosis of astrocytes and RIP3/MLKL-mediated necroptosis of neurons induced by Angiostrongylus cantonensis infection. Cell Mol Neurobiol 2022; 42:1841-1857.
32. Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2021; 68:21-30.
33. Du W, Huang H, Sorrelle N, Brekken RA. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight 2018; 3-11.
34. Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Prakash J, Franklin G, et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine 2015; 10:3163-3168.
35. Khakrizi E, BikhofTorbati M, Shaabanzadeh M. The study of anticancer effect of magnetic chitosan-hydroxyurea nanodrug on HeLa cell line: a laboratory study. JRUMS 2018; 17:715-730.
36. Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 2013; 457:158-167.
37. Hou Z, Zhan C, Jiang Q, Hu Q, Li L, Chang D, et al. Both FA-and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett 2011; 6:1-11.
38. Cao X, Chen C, Yu H, Wang P. Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnol Lett 2015; 37:81-88.
39. Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, et al. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release 2014; 176:54-63.
40. Shokrzadeh M, Ebrahimnejad P, Omidi M, Shadboorestan A, Zaalzar Z. Cytotoxity evaluation of docetaxel nanoparticles by culturing HepG2 carcinoma cell lines. J Mazandaran Univ Med Sci 2012; 22:2-10.
41. Zhang R, Li Y, Zhou M, Wang C, Feng P, Miao W, et al. Photodynamic chitosan nano-assembly as a potent alternative candidate for combating antibiotic-resistant bacteria. ACS Appl Mater Interfaces 2019; 11:26711-26721.
42. Sang M, Han L, Luo R, Qu W, Zheng F, Zhang K, et al. CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer. Biomater Sci 2020; 8:212-223.
43. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother 2018; 106:1461-1468.
44. Alomrani A, Badran M, Harisa GI, ALshehry M, Alhariri M, Alshamsan A, et al. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm J 2019; 27:603-611.
45. Lu H-Y, Chen J, SH D, Jia P-M, Tong J-H, Wu Y-L, et al. Effects of quercetin on chronic myeloid leukemia cell line resistant to imatinib and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017; 25:346-352.
46. Li W, Zhao Y, Qiu L, Ma J. [Effect of quercetin on wnt/beta-catenin signal pathway of K562 and K562R cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019; 27:1409-1415.
47. Hassanzadeh A, Hosseinzadeh E, Rezapour S, Vahedi G, Haghnavaz N, Marofi F. Quercetin promotes cell cycle arrest and apoptosis and attenuates the proliferation of human chronic myeloid leukemia cell line-K562 through interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer Agents Med Chem 2019; 19:1523-1534.