Neobaicalein, a flavonoid from the Scutellaria litwinowii Bornm. & Sint. ex Bornm. induced apoptosis in human leukemic cell lines

Document Type : Original Article


1 Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

3 Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran

4 Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

5 Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmacology and Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

7 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Neobaicalein is one of the rich plant flavonoids isolated from the roots of Scutellaria spp. In this study, we evaluated and compared cytotoxic activity and the related apoptosis mechanisms of neobaicalein from Scutellaria litwinowii Bornm. & Sint. ex Bornm on apoptosis-proficient HL-60 cells and apoptosis-resistant K562 cells. 
Materials and Methods: Cell viability, cell apoptosis, caspase activity, and apoptosis-related protein expression were measured using MTS assay, propidium iodide (PI) staining and flow cytometry, caspase activity assay, and western blot analysis, respectively. 
Results: Neobaicalein significantly reduced cell viability in a dose-dependent manner using the MTS assay (P<0.05). The IC50 values (µM) against HL-60 and K562 cells after 48 hr treatment were 40.5 and 84.8, respectively. Incubation of HL-60 and K562 cells with 25, 50, and 100 µM neobaicalein for 48 hr, significantly increased the number of apoptotic cells and showed cytotoxic effects compared with the control group. Treatment with neobaicalein significantly increased Fas (P<0.05) and the cleaved form of PARP (P<0.05), and decreased the Bcl-2 levels (P<0.05) in HL-60 cells, whereas neobaicalein significantly increased Bax (P<0.05) and the cleaved form of PARP (P<0.05), and the caspases of the extrinsic and intrinsic pathways including caspases-8 (P<0.0001), -9 (P<0.01), and effector caspase-3 (P<0.0001) levels in K562 cells compared with the control group.
Conclusion: It seems neobaicalein might cause cytotoxicity and cell apoptosis through interaction with the different apoptosis-related proteins of apoptotic pathways in HL-60 and K562 cells. Neobaicalein may exert a beneficial protective effect in slowing the progression of hematological malignancies.


1. Le Marchand L. Cancer preventive effects of flavonoids-a review. Biomed Pharmacother 2002; 56: 296-301. 
2.    Middleton EJ, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52: 673-751. 
3.    Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. Iran J Basic Med Sci 2022; 25: 14-26.
4.    Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 2016; 61: 1391-1398. 
5.    Pirali Hamedani M, Ahmad Kashi M, Goodarzi S, Shokouhi H, Shafiee Ardestani M, Hadjiakhoondi A, et al. Elucidation of flavonoids from potent Iranian Scutellaria species against Influenza A (H1N1) virus. Iran J Basic Med Sci 2023; 26: 76-84.
6.    Sonoda M, Nishiyama T, Matsukawa Y, Moriyasu M. Cytotoxic activities of flavonoids from two Scutellaria plants in Chinese medicine. J Ethnopharmacol 2004; 91: 65-68. 
7.    Kimura Y, Okuda H, Arichi S. Studies on scutellariae radix. XIII Effects of various flavonoids on arachidonate metabolism in leukocytes. Planta Med 1985; 51: 132-136. 
8.    Kimura Y, Okuda H, Ogita Z. Effects of flavonoids isolated from Scutellariae radix on fibrinolytic system induced by trypsin in human umbilical vein endothelial cells. J Nat Prod 1997; 60: 598-601. 
9.    Ryu SH, Ahn BZ, Pack MY. The cytotoxic principle of Scutellariae radix against L1210 cell. Planta Med 1985; 51: 355. 
10.    Thayer PS, Himmelfarb P, Watts GL. Cytotoxicity assays with L1210 cells in vitro: Comparison with L1210 in vivo and KB cells in vitro. Cancer Chemother Rep 1971; 2: 1-25. 
11.    Tayarani-Najaran Z, Emami SA, Asili J, Mirzaei A, Mousavi SH. Analyzing cytotoxic and apoptogenic properties of Scutellaria litwinowii root extract on cancer cell lines. Evid Based Complement Alternat Med 2011; 2011: 160682-160680. 
12.    Nikkhah E, Kalalinia F, Asgharian Rezaee M, Tayarani-Najaran Z. Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran J Basic Med Sci. 2021 Sep;24:1292-1300.  
13.    Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol 2013; 23: 620-633. 
14.    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491-501. 
15.    Tayarani-Najaran Z, Asili J, Parsaee H, Mousavi SH, Mashhadian NV, Mirzaee A, et al. Wogonin and neobaicalein from Scutellaria litwinowii roots are apoptotic for HeLa cells. Rev Bras Farmacogn 2012; 22: 268-276. 
16.    Tayarani-Najaran Z, Mousavi SH, Vahdati-Mashhadian N, Emami SA, Parsaee H. Scutellaria litwinowii induces apoptosis through both extrinsic and intrinsic apoptotic pathways in human promyelocytic leukemia cells. Nutr Cancer 2012; 64: 80-88. 
17.    Takido M, Aimi M, Takahashi S, Yamanouchi S, Torii H. Studies on the constituents in the water extract of crude drugs I on the roots of Scutellaria baicalensis. Yakugaku Zasshi 1975; 95: 108-113. 
18.    Iinuma M, Matsuura S, Kusuda K. ^< 13> C-Nuclear Magnetic Resonance (NMR) Spectral studies on poly substituted flavonoids. Chem Pharm Bull 1979; 28: 708-716. 
19.    Ramazani E, Tayarani-Najaran Z, Fereidoni M. Celecoxib, indomethacin and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran J Basic Med Sci 2019; 22: 477-484.
20.    Malich G, Markovic B, Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 1997; 124: 179-192. 
21.    Ahmadi F, Salmasi Z, Mojarad M, Eslahi A, Tayarani-Najaran Z. G-CSF augments the neuroprotective effect of conditioned medium of dental pulp stem cells against hypoxic neural injury in SH-SY5Y cells. Iran J Basic Med Sci. 2021;24:1743-1752. 
22.    Tayarani-Najaran Z, Mousavi SH, Asili J, Emami SA. Growth-inhibitory effect of Scutellaria lindbergii in human cancer cell lines. Food Chem Toxicol 2010; 48: 599-604. 
23.    Emami SA, Kheshami S, Ramazani E, Akaberi M, Iranshahy M, Kazemi SM, et al. Cytotoxic activity of thirteen endemic and rare plants from Chaharmahal and Bakhtiari Province in Iran. Iran J Pharm Sci 2019; 18: 1912-1920. 
24.    Ramazani E, Tayarani-Najaran Z, Shokoohinia Y, Mojarrab M. Comparison of the cytotoxic effects of different fractions of Artemisia ciniformis and Artemisia biennis on B16/F10, PC3 and MCF7 Cells. Res Pharm Sci 2020; 15: 273-280. 
25.    Tayarani-Najaran Z, Makki FS, Alamolhodaei NS, Mojarrab M, Emami SA. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis Willd. on K562 and HL-60 cell lines. Iran J Basic Med Sci 2017; 20: 166-171.
26.    Ramazani E, Fereidoni M, Tayarani-Najaran Z. Protective effects of vitamin K2 on 6-OHDA-induced apoptosis in PC12 cells through modulation bax and caspase-3 activation. Mol Biol Rep 2019; 46: 5777-5783. 
27.    Rezazadeh‐Shojaee FS, Ramazani E, Kasaian J, Tayarani‐ Najaran Z. Protective effects of 6‐gingerol on 6‐hydroxydopamine‐induced apoptosis in PC12 cells through modulation of SAPK/ JNK and survivin activation. J Biochem Mol Toxicol 2021; 36: e22956-e22961. 
28.    Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 2009; 75: 41-48. 
29.    Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev 2009; 35: 57-68. 
30.    Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, et al. Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 2000; 55: 951-955. 
31.    Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res 2005; 11: 3905-3914. 
32.    Wakabayashi I, Yasui K. Wogonin inhibits inducible prostaglandin E2: production in macrophages. Eur J Pharmacol 2000; 406: 477-481. 
33.    Ashe PC, Berry MD. Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 199-214. 
34.    Youle RJ, Strasser A. The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47-59. 
35.    Scovassi AI, Poirier GG. Poly (ADP-ribosylation) and apoptosis. Mol Cell Biochem 1999; 199: 125-137. 
36.    Gambi N, Tramontano F, Quesada P. Poly ADP R. polymerase inhibition and apoptosis induction in cDDP-treated human carcinoma cell lines. Biochem Pharmacol 2008; 75: 2356-2363. 
37.    Frankfurt OS, Krishan A. Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 2003; 14: 555-561. 
38.    Zou P, Liu Z, Xiao J. The effect of the Fas/FasL pathway duringchemotherapeutic drug-induced apoptosis of leukaemeic cells. J Tongji Med Univ 2001; 21: 212-214. 
39.    Boozari M, Mohammadi A, Asili J, Emami SA, Tayarani- Najaran Z. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines. Environ Toxicol Pharmacol 2015; 39: 307-312. 
40.    Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res 2005; 11: 3905-3914.