Curcumin ameliorates chronic Toxoplasma gondii infection-induced affective disorders through modulation of proinflammatory cytokines and oxidative stress

Document Type : Original Article


1 School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

2 Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

3 Özel Medipark Tıp Merkezi, Ankara, Turkey

4 Science and Research branch, Islamic Azad University, Tehran, Iran


Objective(s): Long-term infection with Toxoplasma gondii is associated with affective disorders (i.e., anxiety and depression) in adults. We aimed to explore the effects of curcumin (CR) on anxiety- and depressive-like behaviors in mice infected with T. gondii. 
Materials and Methods: Animals were studied in five groups: Control, Model, Model + CR20, 40, and 80 (with IP injection of 20, 40, and 80 mg/kg CR).  T. gondii infection was prolonged for four weeks. The animals were then treated with CR or vehicle for two weeks and evaluated by behavioral tests at the end of the study. Hippocampal levels of oxidative stress biomarkers (superoxide dismutase; SOD, glutathione; GSH, and malondialdehyde; MDA) and gene expression and protein levels of hippocampal proinflammatory mediators (interleukin-1β; IL-1β, IL-6, IL-18, and tumor necrosis factor- α; TNF-α) were determined. 
Results: Behavioral tests confirmed that long-term infection with T. gondii led to anxiety- and depressive-like behaviors. Antidepressant effects of CR were linked to modulation of oxidative stress and cytokine network in the hippocampal region of infected mice. These results showed that CR reduced anxiety and depression symptoms via regulation of oxidative stress and proinflammatory cytokines in the hippocampus of T. gondii-infected mice. 
Conclusion: Therefore, CR can be used as a potential antidepressant agent against T. gondii-induced affective disorders.  


1.    Carruthers VBJAt. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Trop 2002; 81:111-122
2.    Verma R, Khanna P. Development of Toxoplasma gondii vaccine: A global challenge. Hum Vaccin Immunother 2013; 9:291-293.
3.    Severance EG, Xiao J, Jones-Brando L, Sabunciyan S, Li Y, Pletnikov M, et al. Toxoplasma gondii—a gastrointestinal pathogen associated with human brain diseases. Int Rev Neurobiol 2016; 131:143-163.
4.    Saki J, Sabaghan M, Arjmand R, Teimoori A, Rashno M, Saki G, et al. Curcumin as an indirect methylation inhibitor modulates the effects of Toxoplasma gondii on genes involved in male fertility. Excli J 2020; 19:1196-1207.
5. Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, et al. Toxoplasma gondii, suicidal behavior, and intermediate phenotypes for suicidal behavior. Front Psychiatry 2021; 12:665682.
6. Nasirpour S, Kheirandish F,Fallahi S. Depression and Toxoplasma gondii infection: Assess the possible relationship through a seromolecular case–control study. Arch Microbiol 2020; 202:2689-2695.
7. Erickson LD, Brown BL, Gale SD,Hedges DW. Association between Toxoplasma gondii seropositivity and serointensity and brain volume in adults: A cross-sectional study. PLoS One 2021; 16:e0245994.
8. Tedford E,McConkey G. Neurophysiological changes induced by chronic Toxoplasma gondii infection. Pathogens 2017; ;6:19.
9.    Xiao J,Yolken RH. Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases. Acta Physiol (Oxf) 2015; 213:828-845.
10. Machado VS, Bottari NB, Baldissera MD, Rech VC, Ianiski FR, Signor C, et al. Diphenyl diselenide supplementation in infected mice by Toxoplasma gondii: Protective effect on behavior, neuromodulation and oxidative stress caused by disease. Exp Parasitol 2016; 169:51-58.
11. Vilar-Pereira G, Silva AA, Pereira IR, Silva RR, Moreira OC, de Almeida LR, et al. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions. Brain Behav Immun 2012; 26:1136-1149.
12. Vilar-Pereira G, Castaño Barrios L, Silva AAd, Martins Batista A, Resende Pereira I, Cruz Moreira O, et al. Memory impairment in chronic experimental Chagas disease: Benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PloS One 2021; 16:e0244710.
13. Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, Silva AA, Machado Rodrigues e Silva P, Roffê E, et al. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. Plos one 2021; 16:e0258199.
14. Dunay IR, Gajurel K, Dhakal R, Liesenfeld O,Montoya JG. Treatment of toxoplasmosis: Historical perspective, animal models, and current clinical practice. Clin Microbiol Rev 2018; 31: e00057-17.
15. Remington JS: Infectious diseases of the fetus and newborn infant, Elsevier Saunders, 2006.
16. Petersen E,Schmidt DR. Sulfadiazine and pyrimethamine in the postnatal treatment of congenital toxoplasmosis: what are the options? Expert Rev Anti Infect Ther 2003; 1:175-182
17. Evangelista FF, Costa-Ferreira W, Mantelo FM, Beletini LF, de Souza AH, de Laet Sant’Ana P, et al. Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of Toxoplasma gondii. PLoS One 2021; 16:e0250079-e0250079.
18. Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A, et al. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. Daru 2015; 23:33.
19. Aggarwal BB, Sundaram C, Malani N,Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007;595:1-75.
20. Azami SJ, Teimouri A, Keshavarz H, Amani A, Esmaeili F, Hasanpour H, et al. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine 2018; 13:7363-7374.
21. Ramaholimihaso T, Bouazzaoui F,Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence—A Narrative Review. Front Psychiatry 2020; 11: 572533.
22. Atia AF, Beshay EV, Fath-Allah SK, Sweed D,El-Refai SAJAP. Recombinant mouse prolactin confers partial protection against Toxoplasma gondii infection in a pre-treated experimental murine model. Acta Parasitol 2022; 1-12.
23. Ak T,Gülçin İJC-bi. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 2008; 174:27-37.
24. Amiri S, Haj-Mirzaian A, Momeny M, Amini-Khoei H, Rahimi-Balaei M, Poursaman S, et al. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice. Neuroscience 2017; 340:373-383.
25. Wang D, An SC,Zhang X. Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neuroscience Lett 2008; 433:59-64.
26. Porsolt RD, Bertin A,Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229:327-336.
27. Yankelevitch-Yahav R, Franko M, Huly A,Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp 2015; 2:52587.
28. Bhadra R, Cobb DA, Weiss LM,Khan IA. Psychiatric disorders in toxoplasma seropositive patients--the CD8 connection. Schizophr Bull 2013; 39:485-489.
29. Bay-Richter C, Petersen E, Liebenberg N, Elfving B,Wegener G. Latent toxoplasmosis aggravates anxiety- and depressive-like behaviour and suggest a role of gene-environment interactions in the behavioural response to the parasite. Behav Brain Res 2019; 364:133-139.
30. Xiao J. Toxoplasma-induced Behavioral Changes: An Aspecific Consequence of Neuroinflammation. Trends Parasitol 2020; 36:317-318.
31. Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, et al. Large-scale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun 2019; 79:152-158.
32. Wang T, Tang Z-h, Li J-f, Li X-n, Wang X,Zhao Z-j. A potential association between Toxoplasma gondii infection and schizophrenia in mouse models. Exp Parasitol 2013; 135:497-502
33. Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W,Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants 2021; 10:1439.
34. Bouayed J, Rammal H,Soulimani R. Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev 2009; 2:63-67.
35. Zhou R, Tardivel A, Thorens B, Choi I,Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11:136-140.
36. Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell’osso B, et al. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:1-4.
37. Giridharan VV, Sayana P, Pinjari OF, Ahmad N, da Rosa MI, Quevedo J, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113.
38. Mokhtari T, Tu Y,Hu L. Involvement of the hippocampus in chronic pain and depression. Brain Sci Adv 2019; 5:288-298
39. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: A review. Eur J Neurosci 2021; 53:151-171.
40. Crupi R, Cambiaghi M, Spatz L, Hen R, Thorn M, Friedman E, et al. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice. Biol Psychiatry 2010; 67:558-566.
41. Greenhalgh AD, David S,Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020; 21:139-152.
42. Xu S, Lu J, Shao A, Zhang JH,Zhang J. Glial cells: role of the immune response in ischemic stroke. Front Immunol 2020; 11:294
43. Johnson HJ,Koshy AA. Latent toxoplasmosis effects on rodents and humans: how much is real and how much is media hype? MBio 2020; 11:e02164-02119.
44. Li Y, Severance EG, Viscidi RP, Yolken RH,Xiao J. Persistent Toxoplasma infection of the brain induced neurodegeneration associated with activation of complement and microglia. Infect Immun 2019; 87:e00139-00119.
45. Boillat M, Hammoudi P-M, Dogga SK, Pagès S, Goubran M, Rodriguez I, et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep 2020; 30:320-334. e326.
46. O’Callaghan JP,Miller DB. Neuroinflammation disorders exacerbated by environmental stressors. Metabolism 2019; 100:153951.
47. Hsu PC, Groer M,Beckie T. New findings: depression, suicide, and Toxoplasma gondii infection. J Am Assoc Nurse Pract 2014; 26:629-637.
48. Mahmoudvand H, Ziaali N, Ghazvini H, Shojaee S, Keshavarz H, Esmaeilpour K, et al. Toxoplasma gondii infection promotes neuroinflammation through cytokine networks and induced hyperalgesia in BALB/c mice. Inflammation 2016; 39:405-412.
49. Song C,Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:760-768
50. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67:446-457.
51. Rossi S, Sacchetti L, Napolitano F, De Chiara V, Motta C, Studer V, et al. Interleukin-1β causes anxiety by interacting with the endocannabinoid system. J Neurosci 2012; 32:13896-13905.
52. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology 2011; 36:2452-2459.
53. Crupi R, Cambiaghi M, Deckelbaum R, Hansen I, Mindes J, Spina E, et al. n− 3 fatty acids prevent impairment of neurogenesis and synaptic plasticity in B-cell activating factor (BAFF) transgenic mice. Prev Med 2012; 54:S103-S108.
54. Aggarwal BB,Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009; 30:85-94.
55. Magalhães LG, Machado CB, Morais ER, de Carvalho Moreira ÉB, Soares CS, da Silva SH, et al. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 2009; 104:1197-1201.
56. Chen Y-Q, Xu Q-M, Li X-R, Yang S-L,Zhu-Ge H-X. In vitro evaluation of schistosomicidal potential of curcumin against Schistosoma japonicum. J Asian Nat Prod Res 2012; 14:1064-1072
57. Pérez-Arriaga L, Mendoza-Magana M, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, et al. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 2006; 98:152-161.
58. Saleheen D, Ali SA, Ashfaq K, Siddiqui AA, Agha A,Yasinzai MM. Latent activity of curcumin against leishmaniasis in vitro. Biol Pharm Bull 2002; 25:386-389.
59. Chakrabarti R, Rawat PS, Cooke BM, Coppel RL,Patankar S. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules. PLoS One 2013; 8:e57302.
60. Nagajyothi F, Zhao D, Weiss LM,Tanowitz HB. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res 2012; 110:2491-2499.
61. Goo Y-K, Yamagishi J, Ueno A, Terkawi MA, Aboge GO, Kwak D, et al. Characterization of Toxoplasma gondii glyoxalase 1 and evaluation of inhibitory effects of curcumin on the enzyme and parasite cultures. Parasit Vectors 2015; 8:654.
62. Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489.
63. Talei S, Mokhtari T, Asadi I, Arab L, Hassanzadeh N, Hosseinjani E, et al. Flaxseed oil (Linum Usitatissimum) attenuates restraint stress-induced depressive-like behavior: Upregulation of neurotrophic factors in CA1 region of hippocampus. J Contemp Med Sci 2021; 7:61-65.
64. Dubey AK, Goyal S, Goswami A, Gupta PK,Gupta A. Evaluation of the antidepressant potential of curcumin extract in mice. CNS Neurol Disord Drug Targets. 2021;20:975-981.
65. Yin H, Guo Q, Li X, Tang T, Li C, Wang H, et al. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol 2018; 200:2835-2846.
66. Zhang W-y, Guo Y-j, Han W-x, Yang M-q, Wen L-p, Wang K-y, et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int Immunopharmacol 2019; 67:138-144.
67. Wang Z, Zhang Q, Yuan L, Wang S, Liu L, Yang X, et al. The effects of curcumin on depressive-like behavior in mice after lipopolysaccharide administration. Behav Brain Res 2014; 274:282-290.