Hidden attributes of zymosan in the pathogenesis of inflammatory diseases: A tale of the fungal agent

Document Type : Review Article


1 Galgotias College of Pharmacy, Greater Noida, U.P., India

2 Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062

3 Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India


Inflammation triggers immune system-mediated actions that contribute to the development of multiple diseases. Zymosan, a polysaccharide derived from the Saccharomyces cerevisiae cell wall, is mainly made up of glucan and mannan residues and is used as an inflammatory agent. Zymosan is a fungal product that activates the immune system through the activation of inflammatory signaling pathways, and releases a variety of harmful chemicals including pattern recognition receptors, reactive oxygen species (ROS), and the excitatory amino acid glutamate, cytokines, adhesion molecules, etc. Furthermore, we will dive into the molecular mechanistic insights through which this fungal agent induces and influences various inflammatory diseases such as cardiovascular, neuroinflammation, diabetes, arthritis, and sepsis. Based on the evidence, zymosan appears to be a promising inflammatory-inducing agent. Nonetheless, more animal data is the need of the hour to catch a glimpse and unravel the capacity of zymosan.


1. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-7209.
2. Fitzpatrick FW, DiCarlo FJ: Zymosan. Ann N Y Acad Sci 1964; 118: 233-262.
3. Venkatachalam G, Arumugam S, Doble M. Synthesis, characterization, and biological activity of aminated zymosan. ACS Omega 2020; 5:15973-15982.
4. Frasnelli ME, Tarussio D, Chobaz-Péclat V, Busso N, So A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther 2005; 7: 1-10.
5. Dharavath RN, Kumar V, Chopra K. Zymosan A an Old Tool in Experimental Pharmacology with Newer Applications. Curr Res in Diab & Obes J 2017; 4: 58-61.
6. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78: 539-552. 
7. Arya P and Bhandari U. Involvement of the toll-like receptors-2/nuclear factor-kappa B signaling pathway in atherosclerosis induced by high-fat diet and zymosan in C57BL/6 mice. Indian J Pharmacol 2020; 52: 203–209.
8. Harrigan TJ, Abdullaev IF, Jourd’heuil D, Mongin AA. Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: The role of NADPH oxidases. J Neurochem 2008; 106: 2449-2462.
9. Pini M and Fantuzzi G. Enhanced production of IL-17A during zymosan induced peritonitis in obese mice. J leukoc biol 2010; 87: 51-58.
10. https://clinicaltrials.gov/ct2/show/NCT04674306
11. Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and neuroprotective agents in clinical trials for CNS disease and injury: Where do we go from here?. Front Immunol 2020; 11: 2021-2029.
12. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. J Neurochem 2016; 139: 136-153.
13. Abraham J. and Johnson R. W. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 2009; 12: 445-453.
14. Perry VH and Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014; 10: 217–224.
15. Rehman Muhammad Saif-ur. The potential of toll-like receptors to modulate avian immune system: Exploring the effects of genetic variants and phytonutrients. Front Genet 2021; 12: 1664-8021.
16. Avital Luz , Nina Fainstein , Ofira Einstein , Tamir Ben-Hur. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation. Exp Neurol 2015; 273: 234-242.
17. Kamila Saganová , Jozef Burda, Judita Orendácová, Dása Cízková, Ivo Vanický. Fluoro-Jade B staining following zymosan microinjection into the spinal cord white matter. Cell Mol Neurobiol 2006; 26: 1463-1473.
18. David L Schonberg, Phillip G Popovich, Dana M McTigue. Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J Neuropathol Exp Neurol 2007; 66: 1124-1135.
19. Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61: 1013–1021. 
20. Laflamme N, and Rivest S. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001; 15: 155-163.
21. Dalpke AH, Schäfer MK, Frey M, Zimmermann S, Tebbe J, Weihe E, et al. Immunostimulatory CpG-DNA activates murine microglia. J Immunol 2002; 168: 4854-4863. 
22. Fiebich BL, Batista CR, Saliba SW, Yousif NM, De Oliveira AC. Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 2018; 12: 329-336.
23. Lax N, Fainstein N, Nishri Y, Ben-Zvi A, Ben-Hur T. Systemic microbial TLR2 agonists induce neurodegeneration in Alzheimer’s disease mice. J Neuroinflammation 2020; 17: 1-2.
24. Gonçalves RC, Carvalho CC, Michels M, Abatti MR, Manfredini A, Silva MC, et al. Detailed characterization of brain dysfunction in a long-term rodent model of critical illness. Neurochem Res 2022; 47: 613-621.
25. Pöyhönen Suvi, Er Safak, Domanskyi Andrii, Airavaara Mikko. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front Physiol 2019; 10: 1664-1669.
26. Sandra Moreira Rocha, Ana Clara Cristovão, Filipa Lopes Campos, Carla Pais Fonseca, Graça Baltazar. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 2012; 47: 407-415.
27. Madan M and Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: Proteomic findings. PloS one 2008; 12; 3: 3204-3205.
28. Arya Priyanka, Nabi Sayima, Bhandari Uma. Modulatory role of atorvastatin against high-fat diet and zymosan- induced activation of TLR2/NF-ƙB signaling pathway in C57BL/6 mice. Iran J Basic Med Sci 2021; 24: 1023-1032. 
29. Priya Malik, Stela Z Berisha, Jennifer Santore, Colin Agatisa-Boyle, Gregory Brubaker, Jonathan D Smith, et al. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res 2011; 52: 951-957.
30. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin Exp Pharmacol and Physiol 2008; 35: 1238-44.
31. Liao W, Wei Y, Yu C, Zhou J, Li S, Pang Y, et al.  Prenatal exposure to zymosan results in hypertension in adult offspring rats. Clin Exp Pharmacol Physiol 2008; 35: 1413-1418. 
32. Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019; 11: 2664-2669.
33. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85-97.
34. Pini M, Gove ME, Sennello JA, van Baal JW, Chan L, Fantuzzi G. Role and regulation of adipokines during zymosan-induced peritoneal inflammation in mice. Endocrinology 2008; 149: 4080-4085.
35. Szekanecz Z, Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis. Potential targets for pharmacological Intervention. Drugs Aging 1998; 12: 378-390.
36. Schorlemmer HU, Davies P, Hylton W, Gugic M, Allison AC. The selective release of lysosomal acid hydrolases from mouse peritoneal macrophages by stimuli of chronic inflammation. Br J Exp Pathol 1977; 58: 315–326.
37. Botwinski CA. Systemic inflammatory response syndrome. Neonatal Netw 2001; 20: 218-223. 
38. Remirez D,Addys González A, Merino N, González R, Ancheta O, Romay Ch, Rodríguez S. Effect of phycocyanin in zymosan-induced arthritis in mice-phycocyanin as an antiarthritic compound. Drug Dev Res 1999; 48: 70-75.
39. Remirez D, González R, Merino N, Rodriguez S, Ancheta O. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediators Inflamm 2002; 11: 75-79.
40. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, et al. A novel treatment strategy for sepsis and septic shock based on the interaction between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Antiinflamm Antiallergy Agents Med Chem 2012; 11: 121-150.
41. Di Paola R, Mazzon E, Muia C, Crisafulli C, Genovese T, Di Bella P, et al. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 2006; 26: 402-409. 
42. Cuzzocrea S, de Sarro G, Costantino G, Mazzon E, Laura R, Ciriaco E, et al. Role of interleukin-6 in a non-septic shock model induced by zymosan. Eur Cytokine Netw 1999; 10: 191–203.
43. Rooyackers OE, Saris WH, Soeters PB, Wagenmakers AJ.  Prolonged changes in protein and amino acid metabolism after zymosan treatment in rats. Clin Sci (Lond) 1994; 87: 619–626.
44. Minnaard R, Wagenmakers AJ, Combaret L, Attaix D, Drost MR, Van Kranenburg GP, et al. Ubiquitin-proteasome-dependent proteolytic activity remains elevated after zymosan-induced sepsis in rats while muscle mass recovers. Int J Biochem Cell Biol 2005; 37: 2217–2225.
45. Wang LY, Ku PM, Chen SH, Chung HH, Yu YM. Insulin resistance induced by zymosan as a new animal model in mice. Horm Metab Res 2013; 45: 736-740. 
46. Kim S, Jwa H, Yanagawa Y, Park T. Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet. J Med Food 2012; 15: 527-534.
47. Volman TJ, Goris RJ, Lomme RM, DeGroot J, Verhofstad AA, Hendriks T. Increased expression of matrix metalloproteinases in the murinezymosan-induced multiple organ dysfunction syndrome. J Pathol 2004; 203: 968-975.
48. Iochida LC, Tominaga M, Matsumoto M, Sekikawa A, Sasaki H. Insulin resistance in septic rats-a study by the euglycemic clamp technique. Life Sci 1989; 45: 1567-1573.
49. Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem 2011; 22: 136-141.
50. Novak M and Vetvicka V. β-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J Immunotoxicol 2008; 5: 47-57.
51. Volman TJ, Hendriks T, Goris RJ. Zymosan-induced generalized inflammation: Experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 2005; 4: 291-297.
52. Volman TJ, Goris RJ, van der Jagt M, van de Loo FA, Hendriks T. Organ damage in zymosan-induced multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit Care Med 2002; 7:1553-1559 
53. Liu S, Zhang J, Pang Q, Song S, Miao R, Chen W, Zhou Y, Liu C. The protective role of curcumin in zymosan-induced multiple organ dysfunction syndrome in mice. Shock 2016; 2: 209-215.
54. Dimitrova P, Gyurkovska V, Shalova I, Saso L, Ivanovska N. Inhibition of zymosan-induced kidney dysfunction by tyrphostin AG-490. J Inflamm 2009; 5: 6-13.
55. Mazur-Bialy AI, Kolaczkowska E, Plytycz B. Modulation of zymosan-induced peritonitis by riboflavin co-injection, pre-injection or post-injection in male Swiss mice. Life Sci 2012; 26:1351-1557.
56. Remichkova M, Yordanov M, Dimitrova P. Etoposide attenuates zymosan-induced shock in mice. Inflammation 2008; 31: 57-64.