1. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-7209.
2. Fitzpatrick FW, DiCarlo FJ: Zymosan. Ann N Y Acad Sci 1964; 118: 233-262.
3. Venkatachalam G, Arumugam S, Doble M. Synthesis, characterization, and biological activity of aminated zymosan. ACS Omega 2020; 5:15973-15982.
4. Frasnelli ME, Tarussio D, Chobaz-Péclat V, Busso N, So A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther 2005; 7: 1-10.
5. Dharavath RN, Kumar V, Chopra K. Zymosan A an Old Tool in Experimental Pharmacology with Newer Applications. Curr Res in Diab & Obes J 2017; 4: 58-61.
6. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78: 539-552.
7. Arya P and Bhandari U. Involvement of the toll-like receptors-2/nuclear factor-kappa B signaling pathway in atherosclerosis induced by high-fat diet and zymosan in C57BL/6 mice. Indian J Pharmacol 2020; 52: 203–209.
8. Harrigan TJ, Abdullaev IF, Jourd’heuil D, Mongin AA. Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: The role of NADPH oxidases. J Neurochem 2008; 106: 2449-2462.
9. Pini M and Fantuzzi G. Enhanced production of IL-17A during zymosan induced peritonitis in obese mice. J leukoc biol 2010; 87: 51-58.
10. https://clinicaltrials.gov/ct2/show/NCT04674306
11. Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and neuroprotective agents in clinical trials for CNS disease and injury: Where do we go from here?. Front Immunol 2020; 11: 2021-2029.
12. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. J Neurochem 2016; 139: 136-153.
13. Abraham J. and Johnson R. W. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 2009; 12: 445-453.
14. Perry VH and Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014; 10: 217–224.
15. Rehman Muhammad Saif-ur. The potential of toll-like receptors to modulate avian immune system: Exploring the effects of genetic variants and phytonutrients. Front Genet 2021; 12: 1664-8021.
16. Avital Luz , Nina Fainstein , Ofira Einstein , Tamir Ben-Hur. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation. Exp Neurol 2015; 273: 234-242.
17. Kamila Saganová , Jozef Burda, Judita Orendácová, Dása Cízková, Ivo Vanický. Fluoro-Jade B staining following zymosan microinjection into the spinal cord white matter. Cell Mol Neurobiol 2006; 26: 1463-1473.
18. David L Schonberg, Phillip G Popovich, Dana M McTigue. Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J Neuropathol Exp Neurol 2007; 66: 1124-1135.
19. Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61: 1013–1021.
20. Laflamme N, and Rivest S. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001; 15: 155-163.
21. Dalpke AH, Schäfer MK, Frey M, Zimmermann S, Tebbe J, Weihe E, et al. Immunostimulatory CpG-DNA activates murine microglia. J Immunol 2002; 168: 4854-4863.
22. Fiebich BL, Batista CR, Saliba SW, Yousif NM, De Oliveira AC. Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 2018; 12: 329-336.
23. Lax N, Fainstein N, Nishri Y, Ben-Zvi A, Ben-Hur T. Systemic microbial TLR2 agonists induce neurodegeneration in Alzheimer’s disease mice. J Neuroinflammation 2020; 17: 1-2.
24. Gonçalves RC, Carvalho CC, Michels M, Abatti MR, Manfredini A, Silva MC, et al. Detailed characterization of brain dysfunction in a long-term rodent model of critical illness. Neurochem Res 2022; 47: 613-621.
25. Pöyhönen Suvi, Er Safak, Domanskyi Andrii, Airavaara Mikko. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front Physiol 2019; 10: 1664-1669.
26. Sandra Moreira Rocha, Ana Clara Cristovão, Filipa Lopes Campos, Carla Pais Fonseca, Graça Baltazar. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 2012; 47: 407-415.
27. Madan M and Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: Proteomic findings. PloS one 2008; 12; 3: 3204-3205.
28. Arya Priyanka, Nabi Sayima, Bhandari Uma. Modulatory role of atorvastatin against high-fat diet and zymosan- induced activation of TLR2/NF-ƙB signaling pathway in C57BL/6 mice. Iran J Basic Med Sci 2021; 24: 1023-1032.
29. Priya Malik, Stela Z Berisha, Jennifer Santore, Colin Agatisa-Boyle, Gregory Brubaker, Jonathan D Smith, et al. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res 2011; 52: 951-957.
30. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin Exp Pharmacol and Physiol 2008; 35: 1238-44.
31. Liao W, Wei Y, Yu C, Zhou J, Li S, Pang Y, et al. Prenatal exposure to zymosan results in hypertension in adult offspring rats. Clin Exp Pharmacol Physiol 2008; 35: 1413-1418.
32. Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019; 11: 2664-2669.
33. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11: 85-97.
34. Pini M, Gove ME, Sennello JA, van Baal JW, Chan L, Fantuzzi G. Role and regulation of adipokines during zymosan-induced peritoneal inflammation in mice. Endocrinology 2008; 149: 4080-4085.
35. Szekanecz Z, Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis. Potential targets for pharmacological Intervention. Drugs Aging 1998; 12: 378-390.
36. Schorlemmer HU, Davies P, Hylton W, Gugic M, Allison AC. The selective release of lysosomal acid hydrolases from mouse peritoneal macrophages by stimuli of chronic inflammation. Br J Exp Pathol 1977; 58: 315–326.
37. Botwinski CA. Systemic inflammatory response syndrome. Neonatal Netw 2001; 20: 218-223.
38. Remirez D,Addys González A, Merino N, González R, Ancheta O, Romay Ch, Rodríguez S. Effect of phycocyanin in zymosan-induced arthritis in mice-phycocyanin as an antiarthritic compound. Drug Dev Res 1999; 48: 70-75.
39. Remirez D, González R, Merino N, Rodriguez S, Ancheta O. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediators Inflamm 2002; 11: 75-79.
40. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, et al. A novel treatment strategy for sepsis and septic shock based on the interaction between prostanoids, nitric oxide, and 20-hydroxyeicosatetraenoic acid. Antiinflamm Antiallergy Agents Med Chem 2012; 11: 121-150.
41. Di Paola R, Mazzon E, Muia C, Crisafulli C, Genovese T, Di Bella P, et al. Green tea polyphenol extract attenuates zymosan-induced non-septic shock in mice. Shock 2006; 26: 402-409.
42. Cuzzocrea S, de Sarro G, Costantino G, Mazzon E, Laura R, Ciriaco E, et al. Role of interleukin-6 in a non-septic shock model induced by zymosan. Eur Cytokine Netw 1999; 10: 191–203.
43. Rooyackers OE, Saris WH, Soeters PB, Wagenmakers AJ. Prolonged changes in protein and amino acid metabolism after zymosan treatment in rats. Clin Sci (Lond) 1994; 87: 619–626.
44. Minnaard R, Wagenmakers AJ, Combaret L, Attaix D, Drost MR, Van Kranenburg GP, et al. Ubiquitin-proteasome-dependent proteolytic activity remains elevated after zymosan-induced sepsis in rats while muscle mass recovers. Int J Biochem Cell Biol 2005; 37: 2217–2225.
45. Wang LY, Ku PM, Chen SH, Chung HH, Yu YM. Insulin resistance induced by zymosan as a new animal model in mice. Horm Metab Res 2013; 45: 736-740.
46. Kim S, Jwa H, Yanagawa Y, Park T. Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet. J Med Food 2012; 15: 527-534.
47. Volman TJ, Goris RJ, Lomme RM, DeGroot J, Verhofstad AA, Hendriks T. Increased expression of matrix metalloproteinases in the murinezymosan-induced multiple organ dysfunction syndrome. J Pathol 2004; 203: 968-975.
48. Iochida LC, Tominaga M, Matsumoto M, Sekikawa A, Sasaki H. Insulin resistance in septic rats-a study by the euglycemic clamp technique. Life Sci 1989; 45: 1567-1573.
49. Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem 2011; 22: 136-141.
50. Novak M and Vetvicka V. β-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J Immunotoxicol 2008; 5: 47-57.
51. Volman TJ, Hendriks T, Goris RJ. Zymosan-induced generalized inflammation: Experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 2005; 4: 291-297.
52. Volman TJ, Goris RJ, van der Jagt M, van de Loo FA, Hendriks T. Organ damage in zymosan-induced multiple organ dysfunction syndrome in mice is not mediated by inducible nitric oxide synthase. Crit Care Med 2002; 7:1553-1559
53. Liu S, Zhang J, Pang Q, Song S, Miao R, Chen W, Zhou Y, Liu C. The protective role of curcumin in zymosan-induced multiple organ dysfunction syndrome in mice. Shock 2016; 2: 209-215.
54. Dimitrova P, Gyurkovska V, Shalova I, Saso L, Ivanovska N. Inhibition of zymosan-induced kidney dysfunction by tyrphostin AG-490. J Inflamm 2009; 5: 6-13.
55. Mazur-Bialy AI, Kolaczkowska E, Plytycz B. Modulation of zymosan-induced peritonitis by riboflavin co-injection, pre-injection or post-injection in male Swiss mice. Life Sci 2012; 26:1351-1557.
56. Remichkova M, Yordanov M, Dimitrova P. Etoposide attenuates zymosan-induced shock in mice. Inflammation 2008; 31: 57-64.