Regulatory NK cells in autoimmune disease

Document Type : Review Article

Authors

1 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

3 Department of Biomedical Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran

4 Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq

5 Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq

6 Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq

7 Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

NK cells are defined as the major components of the immunological network which exerts defense against tumors and viral infections as well as regulation of innate and adaptive immunity, shaped through interaction with other cells like T cells. According to the surface markers, NK cells can be divided into CD56dim NK and CD56bright NK subsets. CD56bright NK cells usually are known as regulatory NK cells. Once the immune system loses its self-tolerance, autoimmune diseases develop. NK cells and their subsets can be altered during autoimmune diseases, indicative of their prominent regulatory roles and even pathological and protective functions in autoimmune disorders. In this regard, activation of CD56bright NK cells can suppress activated autologous CD4+ T cells and subsequently prevent the initiation of autoimmunity. In this review article, we summarize the roles of regulatory NK cells in autoimmune disease occurrence which needs more research to uncover their exact related mechanism. It seems that targeting NK cells can be a promising therapeutic platform against autoimmune diseases.

Keywords


1. Delves PJ, Roitt IM. The immune system. New Eng J Med 2000; 343:37-49.
2. Karami K, Rafiee M, Lighvan ZM, Zakariazadeh M, Faal AY, Esmaeili S-A, et al. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking. J Mol Struct 2018; 1154:480-495.
3. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32:1267-1284.
4. Shete MV, Deshmukh RS, Kulkarni T, Shete AV, Karande P, Hande P. Myofibroblasts as important diagnostic and prognostic indicators of oral squamous cell carcinoma: an immunohistochemical study in normal oral mucosa, epithelial dysplasia, and oral squamous cell carcinoma. J Carcinog 2020; 19:1-13.
5. Parkin J, Cohen B. An overview of the immune system. Lancet 2001; 357:1777-1789.
6. Eisenberg R. Do autoantigens define autoimmunity or vice versa? Eur J Immunol 2005; 35:367-370.
7. Leng Q, Bentwich Z. Beyond self and nonself: fuzzy recognition of the immune system. Scand J Immunol 2002; 56:224-232.
8. Shakerian L, Kolahdooz H, Garousi M, Keyvani V, Kheder RK, Faraj TA, et al. IL-33/ST2 axis in autoimmune disease. Cytokine 2022; 158:156015.
9. Mobasheri L, Nasirpour MH, Masoumi E, Azarnaminy AF, Jafari M, Esmaeili S-A. SARS-CoV-2 triggering autoimmune diseases. Cytokine 2022:155873-155882.
10. Gross CC, Schulte-Mecklenbeck A, Wiendl H, Marcenaro E, Kerlero de Rosbo N, Uccelli A, et al. Regulatory functions of natural killer cells in multiple sclerosis. Front Immunol 2016; 7:606-614.
11. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 2007; 179:4685-4693.
12. Karopka T, Fluck J, Mevissen H-T, Glass Ä. The autoimmune disease database: a dynamically compiled literature-derived database. BMC Bioinformatics 2006; 7:1-17.
13. Khorasani S, Mahmoudi M, Kalantari MR, Lavi Arab F, Esmaeili SA, Mardani F, et al. Amelioration of regulatory T cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in pristane-induced lupus mice model. J Cell Physiol 2019; 234:9778-9786.
14. Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME. Definition of human autoimmunity—autoantibodies versus autoimmune disease. Autoimmun Rev 2010; 9:259-266.
15. Esmaeili SA, Mahmoudi M, Momtazi AA, Sahebkar A, Doulabi H, Rastin M. Tolerogenic probiotics: potential immunoregulators in systemic lupus erythematosus. J Cell Physiol 2017; 232:1994-2007.
16. Rose NR. Prediction and prevention of autoimmune disease in the 21st century: a review and preview. Am J Epidemiol 2016; 183:403-406.
17. Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis 2015; 3:151-155.
18. Ji J, Sundquist J, Sundquist K. Gender-specific incidence of autoimmune diseases from national registers. J Autoimmun 2016; 69:102-106.
19. Bachmann MF, Kopf M. On the role of the innate immunity in autoimmune disease. J Exp Med 2001; 193:47-50.
20. Duan L, Rao X, Sigdel KR. Regulation of inflammation in autoimmune disease. J Immunol Res 2019; 2019:1-2.
21. Esmaeili SA, Mahmoudi M, Rezaieyazdi Z, Sahebari M, Tabasi N, Sahebkar A, et al. Generation of tolerogenic dendritic cells using Lactobacillus rhamnosus and Lactobacillus delbrueckii as tolerogenic probiotics. J Cell Biochem 2018; 119:7865-7872.
22. Muñoz LE, Janko C, Schulze C, Schorn C, Sarter K, Schett G, et al. Autoimmunity and chronic inflammation—two clearance-related steps in the etiopathogenesis of SLE. Autoimmun Rev 2010; 10:38-42.
23. Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, et al. The immunomodulatory effects of mesenchymal stromal cell‐based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381.
24. Leavenworth JW, Wang X, Wenander CS, Spee P, Cantor H. Mobilization of natural killer cells inhibits development of collagen-induced arthritis. Proc Natl Acad Sciences U S A 2011; 108:14584-14589.
25. Yang Y, Day J, Souza‐Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:1250-1267.
26. Samadi-Khouzani A, Parizi PK, Ghafari F, Esmaeili S-A, Peymani M, Momtazi-Borojeni AA. Association between rs619586 (A/G) polymorphism in the gene encoding lncRNA-MALAT1 with type 2 diabetes susceptibility among the Isfahan population in Iran. Int J Diabetes Dev Ctries 2021; 42:77-81.
27. Liu M, Liang S, Zhang C. NK cells in autoimmune diseases: protective or pathogenic? Front Immunolo 2021; 12:701-715.
28. Perera Molligoda Arachchige AS. Human NK cells: from development to effector functions. Innate Immun 2021; 27:212-229.
29. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 2011; 11:645-657.
30. Vivier E. Toselo E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9:503-510.
31. Narni-Mancinelli E, Ugolini S, Vivier E. Tuning the threshold of natural killer cell responses. Curr Opin Immunol 2013; 25:53-58.
32. Schuster IS, Coudert JD, Andoniou CE, Degli-Esposti MA. “Natural regulators”: NK cells as modulators of T cell immunity. Front Immunol 2016; 7:235-241.
33. Mody CH, Ogbomo H, Xiang RF, Kyei SK, Feehan D, Islam A, et al. Microbial killing by NK cells. J Leukoc Biol 2019; 105:1285-1296.
34. Baroroh HN, Nugroho AE, Lukitaningsih E, Nurrochmad A. Immune-enhancing effect of bengkoang (Pachyrhizus erosus (L.) Urban) fiber fractions on mouse peritoneal macrophages, lymphocytes, and cytokines. J Nat Sci Biol Med 2021; 12:84-92.
35. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31:227-258.
36. Chen Y, Lu D, Churov A, Fu R. Research progress on NK cell receptors and their signaling pathways. Mediators Inflamm 2020; 2020:1-14.
37. Warren HS, Kinnear BF, Phillips JH, Lanier LL. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J Immunol 1995; 154:5144-5152.
38. Walker C, Checkel J, Cammisuli S, Leibson PJ, Gleich GJ. IL-5 production by NK cells contributes to eosinophil infiltration in a mouse model of allergic inflammation. J Immunol 1998; 161:1962-1969.
39. Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. Role of IL-10-producing natural killer cells in the regulatory mechanisms of inflammation during systemic infection. Biomolecules 2021; 12:4-25.
40. Zhang C, Tian Z. NK cell subsets in autoimmune diseases. J Autoimmun 2017; 83:22-30.
41. Adnan Mezher M, Bahjat Alrifai S, Mahmood Raoof W. Analysis of proinflammatory cytokines in COVID-19 patients in Baghdad, Iraq. Arch Razi Instit 2022; 1:305-313.
42. Peng H, Tian Z. Diversity of tissue-resident NK cells. Semin Immunol 2017; 3-10.
43. Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: a review. Immunol Lett 2020; 222:1-11.
44. Laroni A, Uccelli A. CD56bright natural killer cells: a possible biomarker of different treatments in multiple sclerosis. J Clin Med 2020; 9:1450-1463.
45. Olek M, Joseph AP. Cryo-EM map-based model validation using the false discovery rate approach. Front Mol Biosci 2021; 8:652530-652546.
46. Atabati H, Yazdanpanah E, Mortazavi H, Raoofi A, Esmaeili S-A, Khaledi A, et al. Immunoregulatory effects of tolerogenic probiotics in multiple sclerosis. Adv Exp Med Biol 2021; 1286:87-105.
47. Hassanshahi G, Roohi MA, Esmaeili S-A, Pourghadamyari H, Nosratabadi R. Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients. Cytokine 2021; 148:155706.
48. Laroni A, Gandhi R, Beynon V, Weiner HL. IL-27 imparts immunoregulatory function to human NK cell subsets. PloS One 2011; 6:26173-26179.
49. Laroni A, Armentani E, de Rosbo NK, Ivaldi F, Marcenaro E, Sivori S, et al. Dysregulation of regulatory CD56bright NK cells/T cells interactions in multiple sclerosis. J Autoimmun 2016; 72:8-18.
50. Dunphy S, Gardiner CM. NK cells and psoriasis. J Biomed Biotechnol 2011; 2011:1-10.
51. Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current developments in the immunology of psoriasis. Yale J Biol Med 2020; 93:97-110.
52. Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, et al. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: evidence from experimental and clinical studies. J Cell Physiol 2020; 235:8925-8937.
53. Arjuna S, Chakraborty G, Venkataram R, Dechamma PN, Chakraborty A. Detection of epidermal growth factor receptor T790M mutation by allele-specific loop mediated isothermal amplification. J Carcinog 2020; 19:3-19.
54. Ottaviani C, Nasorri F, Bedini C, de Pità O, Girolomoni G, Cavani A. CD56brightCD16–NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 2006; 36:118-128.
55. Hegab DS, Elgarhy LH, Attia M. Are peripheral natural killer cells and interleukin-21 interrelated in psoriasis pathogenesis? Ann Dermatol 2017; 29:108-110.
56. Sato Y, Ogawa E, Okuyama R. Role of innate immune cells in psoriasis. Int J Mol Sci 2020; 21:6604-6621.
57. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, et al. Human CD56bright NK cells: an update. J Imunol 2016; 196:2923-2931.
58. Cameron A, Kirby B, Griffiths C. Circulating natural killer cells in psoriasis. Br J Dermatol 2003; 149:160-164.
59. Yazdanpanah E, Mahmoudi M, Sahebari M, Rezaieyazdi Z, Esmaeili SA, Tabasi N, et al. Vitamin D3 alters the expression of toll-like receptors in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. J Cell Biochem 2017; 118:4831-4835.
60. Liu M, Liu J, Zhang X, Xiao Y, Jiang G, Huang X. Activation status of CD56dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol 2021; 40:1103-1112.
61. Schepis D, Gunnarsson I, Eloranta ML, Lampa J, Jacobson SH, Kärre K, et al. Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus. Immunology 2009; 126:140-146.
62. Luo Q, Li X, Fu B, Zhang L, Deng Z, Qing C, et al. Decreased expression of TIGIT in NK cells correlates negatively with disease activity in systemic lupus erythematosus. Int J Clin Exp Pathol 2018; 11:2408-2418.
63. Spada R, Rojas JM, Barber DF. Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. J Leukoc Biol 2015; 98:479-487.
64. Yamin R, Berhani O, Peleg H, Aamar S, Stein N, Gamliel M, et al. High percentages and activity of synovial fluid NK cells present in patients with advanced stage active rheumatoid arthritis. Sci Rep 2019; 9:1-12.
65. Zafari P, Rafiei A, Esmaeili SA, Moonesi M, Taghadosi M. Survivin a pivotal antiapoptotic protein in rheumatoid arthritis. J Cell Physiol 2019; 234:21575-21587.
66. Khaledi A, Khademi F, Esmaeili D, Esmaeili S-A, Rostami H. The role of HPaA protein as candidate vaccine against Helicobacter pylori. Der Pharma Chemica 2016; 8:235-237.
67. Fathollahi A, Samimi LN, Akhlaghi M, Jamshidi A, Mahmoudi M, Farhadi E. The role of NK cells in rheumatoid arthritis. Inflamm Res 2021; 70:1063-1073.
68. Dalbeth N, Callan MF. A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum 2002; 46:1763-1772.
69. Dalbeth N, Gundle R, Davies RJ, Lee YG, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol 2004; 173:6418-6426.
70. Feng S, Madsen SH, Viller NN, Neutzsky‐Wulff AV, Geisler C, Karlsson L, et al. Interleukin‐15‐activated natural killer cells kill autologous osteoclasts via LFA‐1, DNAM‐1 and TRAIL, and inhibit osteoclast‐mediated bone erosion in vitro. Immunology 2015; 145:367-379.
71. Takeda H, Kikuchi T, Soboku K, Okabe I, Mizutani H, Mitani A, et al. Effect of IL-15 and natural killer cells on osteoclasts and osteoblasts in a mouse coculture. Inflammation 2014; 37:657-669.
72. Zaiatz Bittencourt V, Jones F, Tosetto M, Doherty GA, Ryan EJ. Dysregulation of metabolic pathways in circulating natural killer cells isolated from inflammatory bowel disease patients. J Crohns Colitis 2021; 15:1316-1325.
73. Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, et al. Human gut-associated natural killer cells in health and disease. Front Immunol 2019; 10:961-979.
74. Samarani S, Sagala P, Jantchou P, Grimard G, Faure C, Deslandres C, et al. Phenotypic and functional changes in peripheral blood natural killer cells in crohn disease patients. Med Inflamm 2020; 2020:1-18.
75. Qasim S, Alamgeer, Saleem M, Alotaibi NH, Bukhari SNA, Alharbi KS, et al. Appraisal of the antiarthritic potential of prazosin via inhibition of proinflammatory cytokine TNF-α: a key player in rheumatoid arthritis. ACS Omega 2021; 6:2379-2388.
76. Dunphy S, Gardiner CM. NK cells and psoriasis. J Biomed Biotechnol 2011; 2011:248317-248327.