Icariin ameliorates oxidative stress-induced inflammation, apoptosis, and heart failure in isoproterenol-challenged Wistar rats

Document Type : Original Article


1 Department of Pharmacology, School of Pharmacy Education and Research, Jamia Hamdard, New Delhi – 110062, India

2 Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi - 110017


Objective(s): Cardiovascular diseases are widespread across the globe, and heart failure (HF) accounts for the majority of heart-associated deaths. Target-based drug therapy is much needed for the management of heart failure. We have designed this study to evaluate icariin for its cardioprotective activity in the isoproterenol (ISO) induced postinfarction model. We have randomly distributed Wistar rats into seven groups, i.e., vehicle control; isoproterenol-treated; icariin per se; sildenafil per se; ISO + icariin 5; ISO + icariin 10; and ISO + sildenafil groups. ISO (85 mg/kg, subcutaneous) was administered at 24 hr for two consecutive days to produce cardiac injury, followed by icariin administration at 5 mg/kg and 10 mg/kg orally for 56 days.
Materials and Methods: Rats were subjected to hemodynamic measurements biweekly. After 24 hr of the completion of dosing, animals were sacrificed, and markers for oxidative stress, fibrosis, inflammation, and cell death were measured. Transmission electron microscopy (TEM), histopathology, and MT staining of cardiac tissue were also done to assess the pathological and fibrotic architectural damage. 
Results: A significant decline in hemodynamics and an antioxidant collapse were found in ISO-intoxicated rats. Alterations in the levels of cyclic guanosine monophosphate (cGMP), interleukin-10 (IL-10), Tumor necrosis factor (TNF-α), and brain natriuretic peptide (BNP) were also observed in serum. Up-regulation of caspase-3, nuclear factor (NF-ĸB), and decline in expression of nuclear factor (NrF-2) contribute to cardiac damage. The treatment with icariin and sildenafil considerably reversed the toxic changes toward normal.
Conclusion: Increased cGMP and Nrf2 expression and suppressed NF-ĸB-caspase-3 signaling play a pivotal role in icariin-mediated cardioprotection. 


1.    van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016; 18: 242-252.   
2.    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 2011; 301: H2181-H2190.
3.    Ma H, He X, Yang Y, Li M, Hao D, Jia Z. The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 2011; 134: 519-541. 
4.    Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 2015; 126: 57-68. 
5.    Jiang Z, Hu B, Wang J, Tang Q, Tan Y, Xiang J, et al. Effect of icariin on cyclic GMP levels and on the mRNA expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in penile cavernosum. J Huazhong Univ Sci Technolog Med Sci 2006; 26: 460-462.
6.    Liu B, Xu C, Wu X, Liu F, Du Y, Sun J, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 2005; 294: 193-205.
7.    Zhang J, Song J, Shao J. Icariin attenuates glucocorticoid-induced bone deteriorations, hypocalcemia and hypercalciuria in mice. Int J Clin Exp Med 2015; 8: 7306.
8.    Fan C, Yang Y, Liu Y, Jiang S, Di S, Hu W, et al. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci Rep 2016; 6: 21145. 
9.    Song YH, Cai H, Gu N, Qian CF, Cao SP, Zhao ZM. Icariin attenuates cardiac remodelling through down‐regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol 2011; 63: 541-549. 
10.    Sun X, Sun X, Jin X, Zhang X, Liu C, Lei L, et al. Icariin induces mouse embryonic stem cell differentiation into beating functional cardiomyocytes. Mol Cell Biochem 2011; 349: 117-123. 
11.    Bao H, Chen L. Icariin reduces mitochondrial oxidative stress injury in diabetic rat hearts. Zhongguo Zhong Yao Za Zhi 2011; 36: 1503-1507.
12.    Tang Y, Jacobi A, Vater C, Zou L, Zou X, Stiehler M. Icariin promotes angiogenic differentiation and prevents oxidative stress‐induced autophagy in endothelial progenitor cells. Stem Cells 2015; 33: 1863-1877. 
13.    Song YH, Cai H, Zhao ZM, Chang WJ, Gu N, Cao SP, et al. Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomed Pharmacother 2016; 83: 1089-1094.
14.    Teerlink JR, Pfeffer JM, Pfeffer MA. Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res 1994; 75: 105-113. 
15.    Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968; 25: 192-205. 
16.    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. FEBS J  1974; 47: 469-474. 
17.    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358. 
18.    Oberley LW, Spitz DR. Nitroblue tetrazolium. In Greenwald RA (Eds.). Handbook Methods For Oxygen Radical Research (1st ed.). CRC Press 1985; 1: 1-4. 
19.    Shooshtari P, Fortuno ES, Blimkie D, Yu M, Gupta A, Kollmann TR, et al. Correlation analysis of intracellular and secreted cytokines via the generalized integrated mean fluorescence intensity. Cytometry Part A 2010; 77: 873-880.
20.    Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat 1979; 129: 541.
21.    Khan V, Sharma S, Bhandari, U, Ali SM, Haque SE. Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci 2018; 194: 205-212.
22.    Riba A, Deres L, Sumegi B, Toth K, Szabados E, et al. cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid Med Cell Longev 2017; 6819281. 
23.    Rona G, Chappel C, Balazs T, Gaudry R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol 1959; 67: 443-455.
24.    Feng W, Li W The study of ISO induced heart failure rat model. Exp Mol Pathol 2010; 88: 299-304. 
25.    Li H, Xie YH, Yang Q, Wang SW, Zhang BL, Wang JB, et al. Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS One 2012; 7: e48872.
26.    Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, et al. Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 2010; 1: 227-232. 
27.    Marques FD, Ferreira AJ, Sinisterra RD, Jacoby BA, Sousa FB, Caliari MV, et al. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension 2011; 57: 477-483. 
28.    Patel V, Upaganlawar A, Zalawadia R, Balaraman R.  Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. Eur J Pharmacol 2010; 644: 160-168. 
29.    Sharma S, Khan V, Dhyani N, Najmi AK, Haque SE. Icariin attenuates isoproterenol-induced cardiac toxicity in Wistar rats via modulating cGMP level and NF-κB signaling cascade. Hum Exp Toxicol 2020; 39: 117-126. 
30.    Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002; 8: 132-140. 
31.    Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, et al. Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 2006; 27: 1699-1705. 
32.    Pacher P, Schulz R, Liaudet L, Szabó C. Nitrosative stress and pharmacological modulation of heart failure, Trends Pharmacol Sci 2005; 26: 302-310. 
33.    Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F. Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci 2014; 35: 404-413. 
34.    Zhou R, Ma P, Xiong A, Xu Y, Wang Y, Xu Q. Protective effects of low‐dose rosuvastatin on isoproterenol‐induced chronic heart failure in rats by regulation of DDAH‐ADMA‐NO pathway. Cardiovasc Ther 2017; 35: 1-8. 
35.    Sahu BD, Kuncha M, Rachamalla SS, Sistla R. Lagerstroemia speciosa L. Attenuates apoptosis in isoproterenol-induced cardiotoxic mice by inhibiting oxidative stress: Possible role of Nrf2/HO-1. Cardiovasc Toxicol 2015; 15: 10-22.
36.    El-Shitany NA, El-Desoky K. Protective effects of carvedilol and vitamin c against azithromycin-induced cardiotoxicity in rats via decreasing ROS, IL1-β, and TNF-α production and inhibiting NF-κB and caspase-3 expression. Oxid Med Cell Longev 2016; 2016: 1-13.
37.    Tawfik MK, Ghattas MH, Abo-Elmatty DM, Abdel-Aziz NA. Atorvastatin restores the balance between pro-inflammatory and anti-inflammatory mediators in rats with acute myocardial infarction. Eur Rev Med Pharmacol Sci 2010; 14: 499-506.
38.    Gupta M, Sharma P, Mazumder AG, Patial V, Singh D. Dwindling of cardio damaging effect of isoproterenol by Punica granatum L. peel extract involve activation of nitric oxide-mediated Nrf2/ARE signaling pathway and apoptosis inhibition. Nitric Oxide 2015; 50: 105-113.