Evaluation of renal damage in a bleomycin-induced murine model of systemic sclerosis

Document Type : Original Article


1 Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México

2 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México

3 Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México

4 CONACYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México



Objective(s): Systemic sclerosis (SSc) is an autoimmune disease of unknown etiology with a high mortality rate. Renal crisis has been reported as one of the predictors of early mortality in these patients. The present study was performed to evaluate bleomycin-induced SSc using an osmotic minipump as a possible model for the analysis of renal damage in SSc.
Materials and Methods: Male CD1 mice were implanted with osmotic minipumps loaded with saline or bleomycin and sacrificed at 6 and 14 days. Histopathological analysis was performed through hematoxylin and eosin (H&E) and Masson’s trichrome staining. The expression of endothelin 1 (ET-1), inducible nitric oxide synthase (iNOS), transforming growth factor β (TGF-β), and 8-hydroxy-2-deoxyguanosine (8-OHdG) was also evaluated by immunohistochemistry.
Results: The administration of bleomycin induced a decrease in the length of Bowman’s space (3.6 μm, P<0.001); an increase in collagen deposition (14.6%, P<0.0001); and an increase in the expression of ET-1 (7.5%, P<0.0001), iNOS (10.8%, P<0.0001), 8-OHdG (161 nuclei, P<0.0001), and TGF-β (2.4% µm, P<0.0001) on Day 6. On Day 14, a decrease in the length of Bowman’s space (2.6 μm, P<0.0001); increased collagen deposition (13.4%, P<0.0001); and increased expression of ET-1 (2.7%, P<0.001), iNOS (10.1%, P<0.0001), 8-OHdG (133 nuclei, P<0.001), and TGF-β (0.6%, P<0.0001) were also observed.
Conclusion: Systemic administration of bleomycin via an osmotic minipump produces histopathological changes in the kidneys, similar to kidney damage in SSc. Therefore, this model would allow the study of molecular alterations associated with SSc-related renal damage.


Main Subjects

1. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers 2015;1:15002.
2. Asano Y. The pathogenesis of systemic sclerosis: An understanding based on a common pathologic cascade across multiple organs and additional organ-specific pathologies. J Clin Med 2020; 9.
3. De Almeida Chaves S, Porel T, Mounié M, Alric L, Astudillo L, Huart A, et al. Sine scleroderma, limited cutaneous, and diffused cutaneous systemic sclerosis survival and predictors of mortality. Arthritis Res Ther 2021; 23:295.
4. Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 390:1685-1699.
5. Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med 2020; 8:304-320.
6. Chrabaszcz M, Małyszko J, Sikora M, Alda-Malicka R, Stochmal A, Matuszkiewicz-Rowinska J, et al. Renal Involvement in Systemic Sclerosis: An Update. Kidney Blood Press Res 2020; 45:532-548.
7. Shanmugam VK, Steen VD. Renal manifestations in scleroderma: evidence for subclinical renal disease as a marker of vasculopathy. Int J Rheumatol 2010; 2010:1-8.
8. Hao Y, Hudson M, Baron M, Carreira P, Stevens W, Rabusa C, et al. Early Mortality in a Multinational Systemic Sclerosis Inception Cohort. Arthritis Rheumatol 2017; 69:1067-1077.
9. Steen VD. Kidney involvement in systemic sclerosis. Presse Med 2014; 43:e305-e314.
10. Flavahan NA, Flavahan S, Liu Q, Wu S, Tidmore W, Wiener CM, et al. Increased α2-adrenergic constriction of isolated arterioles in diffuse scleroderma. Arthritis Rheum 2000; 43:1886-1890.
11. Penn H, Quillinan N, Khan K, Chakravarty K, Ong VH, Burns A, et al. Targeting the endothelin axis in scleroderma renal crisis: Rationale and feasibility. QJM 2013; 106:839-848.
12. Dooley A, Gao B, Bradley N, Abraham DJ, Black CM, Jacobs M, et al. Abnormal nitric oxide metabolism in systemic sclerosis: increased levels of nitrated proteins and asymmetric dimethylarginine. Rheumatology 2006; 45:676-684.
13. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, et al. NAD(P)H oxidase mediates TGF-β1–induced activation of kidney myofibroblasts. J Am Soc Nephrol 2010; 21:93-102.
14. Watanabe T, Nishimoto T, Mlakar L, Heywood J, Malaab M, Hoffman S, et al. Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis. PLoS One 2017; 12:e0179917.
15. Avouac J. Mouse model of experimental dermal fibrosis: The bleomycin-induced dermal fibrosis. Methods Mol Biol 2014; 1142: 91-98.
16. Vásquez-Garzón VR, Ramírez-Cosmes A, Reyes-Jiménez E, Carrasco-Torres G, Hernández-García S, Aguilar-Ruiz SR, et al. Liver damage in bleomycin-induced pulmonary fibrosis in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1503-1513.
17.Lazo JS, Humphreys CJ. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A 1983; 80:3064-3068.
18. Crnovcic I, Gan F, Yang D, Dong L-B, Schultz PG, Shen B. Activities of recombinant human bleomycin hydrolase on bleomycins and engineered analogues revealing new opportunities to overcome bleomycin-induced pulmonary toxicity. Bioorg Med Chem Lett 2018; 28:2670-2674.
19. Lee R, Reese C, Bonner M, Tourkina E, Hajdu Z, Riemer EC, et al. Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2014; 306:L736-L748.
20. Liang M, Lv J, Zou L, Yang W, Xiong Y, Chen X, et al. A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis. Lab Invest 2014; 95:342-350.
21. Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16:1905-1914.
22. Venditti CC, Casselman R, Young I, Karumanchi SA, Smith GN. Carbon monoxide prevents hypertension and proteinuria in an adenovirus sFlt-1 preeclampsia-like mouse model. PLoS One 2014; 9:e106502.
23. Mouthon L, Mehrenberger M, Teixeira L, Fakhouri F, Bérezné A, Guillevin L, et al. Endothelin-1 expression in scleroderma renal crisis. Hum Pathol 2011; 42:95-102.
24. Asano Y, Sato S. Animal models of scleroderma: Current state and recent development. Curr Rheumatol Rep 2013; 15:382.
25. Ravanetti F, Ragionieri L, Ciccimarra R, Ruscitti F, Pompilio D, Gazza F, et al. Modeling pulmonary fibrosis through bleomycin delivered by osmotic minipump: A new histomorphometric method of evaluation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L376-L385.
26. Batal I, Domsic RT, Shafer A, Medsger TA, Kiss LP, Randhawa P, et al. Renal biopsy findings predicting outcome in scleroderma renal crisis. Hum Pathol 2009; 40:332-340.
27. Batal I, Domsic RT, Medsger TA, Bastacky S. Scleroderma renal crisis: A pathology perspective. Int J Rheumatol 2010; 2010:1-7.
28. Walters DM, Kleeberger SR. Mouse models of bleomycin‐induced pulmonary fibrosis. Curr Protoc Pharmacol 2008; Chapter 5:Unit 5.46.
29. Fujita M, Mizuta Y, Ikegame S, Ouchi H, Ye Q, Harada E, et al. Biphasic effects of free radical scavengers against bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2008; 21:805-811.
30. Goldie RG, Knott PG, Carr MJ, Hay DWP, Henry PJ. The endothelins in the pulmonary system. Pulm Pharmacol 1996; 9:69-93.
31. Kundu D, Abraham D, Black CM, Denton CP, Bruckdorfer KR. Reduced levels of S-nitrosothiols in plasma of patients with systemic sclerosis and Raynaud’s phenomenon. Vascul Pharmacol 2014; 63:178-181.
32. Watanabe T, Frost DB, Mlakar L, Heywood J, da Silveira WA, Hardiman G, et al. A human skin model recapitulates systemic sclerosis dermal fibrosis and identifies COL22A1 as a TGFβ early response gene that mediates fibroblast to myofibroblast transition. Genes 2019; 10.
33. Nikitorowicz-Buniak J, Denton CP, Abraham D, Stratton R. Partially evoked epithelial-mesenchymal transition (emt) is associated with increased tgfbeta signaling within lesional scleroderma skin. PLoS One 2015; 10:e0134092.
34. Majewski D, Majewska KA, Kuznar-Kaminska B, Runowska M, Piorunek T, Batura-Gabryel H, et al. Systemic sclerosis and serum content of transforming growth factor.  medical science and research. Adv Exp Med Biol 2019. p. 63-67.
35. Dantas AT, Gonçalves SMC, Almeida ARd, Gonçalves RSG, Sampaio MCPD, Vilar KdM, et al. Reassessing the role of the active tgf-β1 as a biomarker in systemic sclerosis: Association of serum levels with clinical manifestations. Disease Markers 2016; 2016:1-6.
36. Varga J, Pasche B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 2009; 5:200-206.
37. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127:526-537.
38. Kissin EY, Merkel PA, Lafyatis R. Myofibroblasts and hyalinized collagen as markers of skin disease in systemic sclerosis. Arthritis Rheum 2006; 54:3655-3660.
39. Wells RG. Tissue mechanics and fibrosis. Biochim Biophys Acta 2013; 1832:884-890.