Therapeutic effects of diosgenin on alveolar bone loss and apoptosis in diabetic rats with experimental periodontitis

Document Type : Original Article

Authors

1 Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey

2 Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turke

3 Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Dokuz Eylül University, İzmir, Turkey

4 Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey

5 Department of Veterinary Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey

Abstract

Objective(s): The present study aims to evaluate the efficacy of administered diosgenin (DG) which has anti-oxidant and anti-inflammatory effects, on alveolar bone loss (ABL) and apoptosis in diabetic rats with periodontitis. 
Materials and Methods: Forty male Wistar albino rats (n=40) were divided into five subgroups; control (non-ligated), periodontitis (P), diabetes mellitus (DM), P+DM, and P+DM+DG. To stimulate experimental periodontitis, a ligature was embedded at the gingival margin of the lower first molars for each rat, and diabetes was induced by streptozotocin (STZ) for DM groups. Then, DG (96 mg/kg daily) was performed on the P+DM+DG group by oral gavage for 29 days. At day 30, all animals were euthanized and the distance from the cement-enamel junction to the alveolar bone margin was measured using cone-beam computed tomography as ABL. In addition, immunohistochemical analyses were used to evaluate the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), bone morphogenetic protein 2 (BMP-2), receptor activator of NF-κB ligand (RANKL), collagen type I (Col-1), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). 
Results: Induction of periodontitis and diabetes significantly increased ABL (P<0.05). DG administration significantly reduced ABL, expression of RANKL and Bax, and enhanced the expression of ALP, OCN, BMP-2, Bcl-2, and Col-1 in the P+DM+DG group compared with the P+DM group (P<0.05). 
Conclusion: It is revealed that DG considerably enhanced bone formation and contributed to periodontal healing in this experimental study performed in diabetic rats.

Keywords

Main Subjects


1.    Löe H. Periodontal disease: the sixth complication of diabetes mellitus. Diabetes Care 1993;16:329-334.
2.    Kocher T, König J, Borgnakke WS, Pink C, Meisel P. Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge. Periodontol 2000 2018;78:59-97.
3.    Borgnakke WS, Ylöstalo PV, Taylor GW, Genco RJ. Effect of periodontal disease on diabetes: Systematic review of epidemiologic observational evidence. J Periodontol 2013;84:S135-S152.
4.    Graziani F, Gennai S, Solini A, Petrini M. A systematic review and meta‐analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes An update of the EFP‐AAP review. J Clin Periodontol 2018;45:167-187.
5.    Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000 2020;83:59-65.
6.    Van Dyke TE, Sima C. Understanding resolution of inflammation in periodontal diseases: is chronic inflammatory periodontitis a failure to resolve? Periodontol 2000 2020;82:205-213.
7.    Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2000 2020;84:45-68.
8.    Wang GP. Defining functional signatures of dysbiosis in periodontitis progression. Genome Med 2015;7:1-3.
9.    Yee YH, Chong SJF, Pervaiz S. The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biol Chem 2016;397:585-593.
10.    Arabacı T, Kermen E, Özkanlar S, Köse O, Kara A, Kızıldağ A, et al. Therapeutic effects of melatonin on alveolar bone resorption after experimental periodontitis in rats: A biochemical and immunohistochemical study. J Periodontol 2015;86:874-881.
11.    Tobón‐Arroyave SI, Isaza‐Guzmán DM, Restrepo‐Cadavid EM, Zapata‐Molina SM, Martínez‐Pabón MC. Association of salivary levels of the bone remodelling regulators sRANKL and OPG with periodontal clinical status. J Clin Periodontol 2012;39:1132-1140.
12.    Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Clin Pathol 2006;169:987-998.
13.    Bostanci N, İlgenli T, Emingil G, Afacan B, Han B, Töz H, et al. Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: Implications of their relative ratio. J Clin Periodontol 2007;34:370-376.
14.    Santos VR, Lima JA, Gonçalves TED, Bastos MF, Figueiredo LC, Shibli JA, et al. Receptor activator of nuclear factor‐kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well‐controlled type 2 diabetes. J Periodontol 2010;81:1455-1465.
15.    Vieira Ribeiro F, de Mendonça AC, Santos VR, Bastos MF, Figueiredo LC, Duarte PM. Cytokines and bone‐related factors in systemically healthy patients with chronic periodontitis and patients with type 2 diabetes and chronic periodontitis. J Periodontol 2011;82:1187-1196.
16.    Graves DT, Alshabab A, Albiero ML, Mattos M, Corrêa JD, Chen S, et al. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018;45:285-292.
17.    Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther 2011;11:375-385.
18.    Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. Chir Organi Mov 2008;92:161-168.
19.    Alpan AL, Kızıldağ A, Özdede M, Karakan NC, Özmen Ö. The effects of taxifolin on alveolar bone in experimental periodontitis in rats. Arch Oral Biol 2020;117:104823.
20.    Hashimi SM. Exogenous noggin binds the BMP‐2 receptor and induces alkaline phosphatase activity in osteoblasts. J Cell Biochem 2019;120:13237-13242.
21.    Ma MH, Wu XH, He Y, Huang W. Anti-inflammatory and analgesic effects of saponins from D. Zingiberensis CH Wright and diosgenin derivative on mice. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011;42:494-497.
22.    Pari L, Monisha P, Jalaludeen AM. Beneficial role of diosgenin on oxidative stress in aorta of streptozotocin induced diabetic rats. Eur J Pharmacol 2012;691:143-150.
23.    Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS. Anti-oxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci Biotechnol Biochem 2007;71:3063-3071.
24.    Khosravi Z, Sedaghat R, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol 2019;70:37-46.
25.    Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Ju D. Diosgenin protects against alveolar bone loss in ovariectomized rats via regulating long non‑coding RNAs. Exp Ther Med 2018;16:3939-3950.
26.    Zhang Z, Song C, Fu X, Liu M, Li Y, Pan J, et al. High-dose diosgenin reduces bone loss in ovariectomized rats via attenuation of the RANKL/OPG ratio. Int J Mol Sci 2014;15:17130-17147.
27.    Zhao S, Niu F, Xu CY, Liu Y, Ye L, Bi GB, et al. Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci 2016;185:581-587.
28.    Alpan AL, Bakar O, Kızıldağ A, Özdede M, Topsakal Ş, Özmen Ö. Effects of taxifolin on bone formation and apoptosis in experimental periodontitis in diabetic rats. Biotech Histochem 2021:1-9.
29.    Leitão R, Ribeiro R, Chaves H, Rocha F, Lima V, Brito G. Nitric oxide synthase inhibition prevents alveolar bone resorption in experimental periodontitis in rats. J Periodontol 2005;76:956-963.
30.    Kulah K, Gulsahi A, Kamburoğlu K, Geneci F, Ocak M, Celik HH, et al. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2019;127:247-256.
31.    Tayman MA, Kamburoğlu K, Küçük Ö, Ateş FS, Günhan M. Comparison of linear and volumetric measurements obtained from periodontal defects by using cone beam-CT and micro-CT: an in vitro study. Clin Oral Investig 2019;23:2235-2244.
32.    Bathina S, Das UN. Resolvin D1 decreases severity of streptozotocin-induced type 1 diabetes mellitus by enhancing BDNF levels, reducing oxidative stress, and suppressing inflammation. Int J Mol Sci 2021;22:1516-1529.
33.    Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes 2015;8:181-188.
34.    Mei YM, Li L, Wang XQ, Zhang M, Zhu LF, Fu YW, et al. AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells. J Cell Biochem 2020;121:3764-3779.
35.    Kızıldağ A, Arabacı T, Albayrak M, Balseven HM, Aksu Kızıldağ C, Tasdemir U. A biochemical and immunohistochemical study of the effects of caffeic acid phenethyl ester on alveolar bone loss and oxidative stress in diabetic rats with experimental periodontitis. Biotech Histochem 2020;95:456-463.
36.    Balci Yuce H, Toker H, Yildirim A, Tekin MB, Gevrek F, Altunbas N. The effect of luteolin in prevention of periodontal disease in Wistar rats. J Periodontol. 2019;90:1481-1489.
37.    Yang D, Liu R, Liu L, Liao H, Wang C, Cao Z. Involvement of CD 147 in alveolar bone remodeling and soft tissue degradation in experimental periodontitis. J Periodont Res 2017;52:704-712.
38.    Varela HA, Souza JC, Nascimento RM, Araújo RF, Vasconcelos RC, Cavalcante RS, et al. Injectable platelet rich fibrin: Cell content, morphological, and protein characterization. Clin Oral Investig 2019;23:1309-1318.
39.    Liao AM, Jung H, Yu JW, Lee DH, Park SS, Cai B, et al. Synthesis and biological evaluation of arginyl–diosgenin conjugate as a potential bone tissue engineering agent. Chem Biol Drug Des 2018;91:17-28.
40.    Ge Y, Ding S, Feng J, Du J, Gu Z. Diosgenin inhibits Wnt/β-catenin pathway to regulate the proliferation and differentiation of MG-63 cells. Cytotechnology 2021;73:169-178.