1. Nørremølle A, Budtz-Jørgensen E, Fenger K, Nielsen J, Sørensen S, Hasholt L. 4p16.3 haplotype modifying age at onset of Huntington disease. Clin Genet 2009;75:244-250.
2. Gundry CN, Wittwer CT. SYBR Green I Analysis of the Trinucleotide Repeat Responsible for Huntington’s Disease. In: Rapid Cycle Real-Time PCR-Methods and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. p. 57-63.
3. Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H, et al. CAG expansion in the huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 2009;84:351–366.
4. Myers RH. Huntington’s Disease Genetics. NeuroRx 2004;1:255-262.
5. Lee ST, Kim M. Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington’s disease. Mech Ageing Dev 2006;127:432-435.
6. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020;9:276-307.
7. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis 2021;12:468-479.
8. Xie R, Zhang Y, Zhang J, Li J, Zhou X. The role of circular RNAs in immune-related diseases. Front Immunol 2020;11:545-555.
9. Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017;11:151-167.
10. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402-413.
11. Hoss AG, Labadorf A, Latourelle JC, Kartha VK, Hadzi TC, Gusella JF, et al. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015;8:10-24.
12. Reed ER, Latourelle JC, Bockholt JH, Bregu J, Smock J, Paulsen JS, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 2018;90:e264-272.
13. Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019;30:114-127.
14. Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol 2018;9:1262-1277.
15. Chen L, Huang C, Wang X, Shan G. Circular RNAs in eukaryotic cells. Curr Genomics 2015;16:312-318.
16. Panda AC. Circular RNAs Act as miRNA Sponges. In 2018. p. 67-79.
17. Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: The emerging class of non-coding rnas and their potential role in human neurodegenerative diseases. Mol Neurobiol 2017;54:7224-7234.
18. Zhang Y, Zhao Y, Liu Y, Wang M, Yu W, Zhang L. Exploring the regulatory roles of circular RNAs in Alzheimer’s disease. Transl Neurodegener 2020;9:35-42.
19. Feng Z, Zhang L, Wang S, Hong Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun 2020;522:388-394.
20. Moradi M, Golmohammadi R, Najafi A, Moosazadeh Moghaddam M, Fasihi-Ramandi M, Mirnejad R. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Informatics Med Unlocked 2022;28:100862-100871.
21. Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 2020;18:731-743.
22. Hajighahramani N, Eslami M, Negahdaripour M, Ghoshoon MB, Dehshahri A, Erfani N, et al. Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections. Mol Cell Probes 2019;46:101414.
23. Patil K, Joseph S, Shah J, Mukherjee S. An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology. J Assist Reprod Genet 2022;39:427-440.
24. Hoss AG, Kartha VK, Dong X, Latourelle JC, Dumitriu A, Hadzi TC, et al. MicroRNAs located in the Hox gene clusters are implicated in huntington’s disease pathogenesis. PLoS Genet 2014;10:e1004188-1004201.
25. Mastrokolias A, Ariyurek Y, Goeman JJ, van Duijn E, Roos RA, van der Mast RC, et al. Huntington’s disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet 2015;23:1349-1356.
26. Li JH, Liu S, Zhou H, Qu LH, Yang JH. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014;42:92-97.
27. Glažar P, Papavasileiou P, Rajewsky N. CircBase: A database for circular RNAs. RNA 2014;20:1666-1670.
28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 2003;13:2498-2504.
29. Kuleshov M V., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44:W90-97.
30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: Tool for the unification of biology. Nat Genet 2000;25:25-29.
31. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28:27-30.
32. Wu YY, Kuo HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci 2020;27:1-23.
33. Tan X, Liu Y, Zhang T, Cong S. Integrated analysis of differentially expressed genes and construction of a competing endogenous RNA network in human Huntington neural progenitor cells. BMC Med Genomics 2021;14:48-61.
34. Bhattacharyya NP, Banerjee M, Majumder P. Huntington’s disease: Roles of huntingtin-interacting protein 1 (HIP-1) and its molecular partner HIPPI in the regulation of apoptosis and transcription. FEBS J 2008;275:4271-4279.
35. Dunah AW, Jeong H, Griffin A, Kim Y-M, Standaert DG, Hersch SM, et al. Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington’s Disease. Science 2002;296:2238-2243.
36. Marchina E, Misasi S, Bozzato A, Ferraboli S, Agosti C, Rozzini L, et al. Gene expression profile in fibroblasts of Huntington’s disease patients and controls. J Neurol Sci 2014;337:42-46.
37. Wilson H, De Micco R, Niccolini F, Politis M. Molecular imaging markers to track Huntington’s disease pathology. Front Neurol 2017;8:1-10.
38. Valcárcel-Ocete L, Alkorta-Aranburu G, Iriondo M, Fullaondo A, García-Barcina M, Fernández-García JM, et al. Exploring genetic factors involved in huntington disease age of onset: E2F2 as a new potential modifier gene. PLoS One 2015;10:e0131573-131586.
39. Vandeweyer G, Van Der Aa N, Reyniers E, Kooy RF. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. Am J Hum Genet 2012;90:1071-1078.
40. Chowdhury T, Lee Y, Kim S, Yu HJ, Ji SY, Bae JM, et al. A glioneuronal tumor with CLIP2-MET fusion. NPJ Genomic Med 2020;5:1-7.
41. Li X, Meng Y. SUMOylation Regulator-Related Molecules Can Be Used as Prognostic Biomarkers for Glioblastoma. Front Cell Dev Biol 2021;9: 658856-658864.