Propolis and its constituents against cardiovascular risk factors including obesity, hypertension, atherosclerosis, diabetes, and dyslipidemia: A comprehensive review

Document Type : Review Article

Authors

1 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Cardiovascular diseases (CVDs) are some of the major causes of death worldwide. The modern lifestyle elevates the risk of CVDs. CVDs have several risk factors such as obesity, dyslipidemia, atherosclerosis, hypertension, and diabetes. Using herbal and natural products plays a pivotal role in the treatment of different diseases such as CVDs, diabetes, and metabolic syndrome. Propolis, a natural resinous mixture, is made by honey bees. Its main components are phenolics and terpenoid compounds such as caffeic acid phenethyl ester, chrysin, and quercetin. In this review, multiple studies regarding the pharmacological impacts of propolis and its constituents with their related mechanisms of action against mentioned CVD risk factors have been discussed in detail. Here, we used electronic databases or search engines such as Scopus, Web of Science, Pubmed, and Google Scholar without time limitations. The primary components of propolis are phenolics and terpenoid compounds such as caffeic acid phenethyl ester, chrysin and quercetin. Propolis and its constituents have been found to exhibit anti-obesity, anti-hypertension, anti-dyslipidemic, anti-atherosclerosis, and anti-diabetic effects. The vast majority of studies discussed in this review demonstrate that propolis and its constituents could have therapeutic effects against mentioned CVD risk factors via several mechanisms such as antioxidant, anti-inflammatory, reducing adipogenesis, HMG-CoA reductase inhibitory effect, inhibition of the ACE, increasing insulin secretion, NO level, etc.

Keywords

Main Subjects


1. Ding L, Liang Y, Tan ECK, Hu Y, Zhang C, Liu Y, et al. Smoking, heavy drinking, physical inactivity, and obesity among middle-aged and older adults in China: Cross-sectional findings from the baseline survey of CHARLS 2011-2012. BMC Public Health 2020; 20:1062-1070. 
2. Lordan R, Tsoupras A, and Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. 
3. Canto ED, Ceriello A, Ryde L, Ferrini M, Hansen TB, Schnell O, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications Diabetes cardiovascular risk. Eur J Prev Cardiol 2019; 26:25-32. 
4. Lavie CJ, Milani R V., and Ventura HO. Obesity and cardiovascular disease. Risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 2009; 53:1925–1932. 
5. Kokubo Y and Matsumoto C. Hypertension is a risk factor for several types of heart disease: Review of prospective studies. Adv Exp Med Biol 2017; 956:419-426. 
6. Pol T, Held C, Westerbergh J, Lindbäck J, Alexander JH, Alings M, et al. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial. J Am Heart Assoc 2018; 7:e007444-e007454. 
7. Razavi BM and Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37:1031–1040. 
8. Tabeshpour J, Razavi BM, and Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phyther Res 2017; 31:819–837. 
9. Rameshrad M, Razavi BM, Imenshahidi M, and Hosseinzadeh H. Vitis vinifera (grape) seed extract and resveratrol alleviate bisphenol-A-induced metabolic syndrome: Biochemical and molecular evidences. Phyther Res 2019; 33:832-844. 
10. Hassani FV, Shirani K, and Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:931-949. 
11. Mollazadeh H and Hosseinzadeh H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran J Basic Med Sci 2016; 19:1258-1270. 
12. Hosseini A and Hosseinzadeh H. A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J Endocrinol Invest 2015; 38:1147–1157. 
13. Razavi BM and Hosseinzadeh H. Saffron: A promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97:1679-1685. 
14. Tabeshpour J, Imenshahidi M, and Hosseinzadeh H. A review of the effects of berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017; 20:557-568.
15. Tajmohammadi A, Razavi BM, and Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phyther Res 2018; 32:1933–1949. 
16. Sanati S, Razavi BM, and Hosseinzadeh H. A review of the effects of Capsicum annuum L. And its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21:439-448. 
17. Tousian Shandiz H, Razavi BM, and Hosseinzadeh H. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phyther Res 2017; 31:1173-1182. 
18. Hosseinzadeh H and Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 2014; 37:783-788. 
19. Sugiyama T, Takahashi K, and Mori H. Royal jelly acid, 10-hydroxy-trans-2-decenoic acid, as a modulator of the innate immune responses. Endocrine Metab Immun Disord Targets 2012; 12:368–376. 
20. Cornara L, Biagi M, Xiao J, and Burlando B. Therapeutic properties of bioactive compounds from different honeybee products. Front Pharmacol 2017; 8:412-431. 
21. Lima WG, Brito JCM, da Cruz Nizer WS. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phyther Res 2021; 35:743-750. 
22. Hossain KS, Hossain MG, Moni A, Rahman MM, Rahman UH, Alam M, et al. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon 2020; 6:e05798-e05805. 
23. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Functional properties of honey, propolis, and royal jelly. J Food Sci 2008; 73:117-124. 
24. Khazaei M, Ansarian A, Ghanbari E. New findings on biological actions and clinical applications of royal jelly: A review. J Diet Suppl 2018; 15:757–775. 
25. Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical properties of propolis on diverse chronic diseases and its potential applications and health benefits. Nutrients 2021;13:78-108. 
26. Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The cardiovascular therapeutic potential of propolis-A comprehensive review. Biology 2021;10:27-46. 
27. Dezmirean DS, Paşca C, Moise AR, Bobiş O. Plant sources responsible for the chemical composition and main bioactive properties of poplar-type propolis. Plants 2021; 10:22-41. 
28. Braakhuis A. Evidence on the health benefits of supplemental propolis. Nutrients 2019; 11:2705-2719. 
29. López-Valverde N, Pardal-Peláez B, López-Valverde A, Flores-Fraile J, Herrero-Hernández S, Macedo-De-sousa B, et al. Effectiveness of propolis in the treatment of periodontal disease: Updated systematic review with meta-analysis. Anti-oxidants 2021; 10:269-282. 
30. Balaha M, De Filippis B, Cataldi A, and Di Giacomo V. Cape and neuroprotection: A review. Biomolecules 2021; 11:176-205. 
31. Olegário LS, Andrade JKS, Andrade GRS, Denadai M, Cavalcanti RL, da Silva MAAP, et al. Chemical characterization of four Brazilian brown propolis: An insight in tracking of its geographical location of production and quality control. Food Res Int 2019; 123:481-502. 
32. Bankova V. Recent trends and important developments in propolis research. Evidence-based Complement Altern Med 2005; 2:29-32. 
33. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 2017; 2017:1259510-1259530. 
34. Oršolić N, Jurčević IL, Đikić D, Rogić D, Odeh D, Balta V, et al. Effect of propolis on diet-induced hyperlipidemia and atherogenic indices in mice. Anti-oxidants 2019; 8:156-177. 
35. Zhou H, Wang H, Shi N, and Wu F. Potential protective effects of the water-soluble chinese propolis on hypertension induced by high-salt intake. Clin Transl Sci 2020; 13:907-915. 
36. Ahmed R, Tanvir EM, Hossen MS, Afroz R, Ahmmed I, Rumpa NEN, et al. Anti-oxidant properties and cardioprotective mechanism of Malaysian propolis in rats. Evidence-based Complement Altern Med 2017; 2017:5370545-5370555. 
37. El Menyiy N, Al-Wali N, El Ghouizi A, El-Guendouz S, Salom K, Lyoussi B. Potential therapeutic effect of Moroccan propolis in hyperglycemia, dyslipidemia, and hepatorenal dysfunction in diabetic rats. Iran J Basic Med Sci 2019; 22:1331-1339. 
38. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019;92:98-107. 
39. Cardinault N, Tourniaire F, Astier J, Couturier C, Perrin E, Dalifard J, et al. Poplar propolis ethanolic extract reduces body weight gain and glucose metabolism disruption in high-fat diet-fed mice. Mol Nutr Food Res 2020; 64:e2000275. 
40. Ichi I, Hori H, Takashima Y, Adachi N, Kataoka R, Okihara K, et al. The beneficial effect of propolis on fat accumulation and lipid metabolism in rats fed a high-fat diet. J Food Sci 2009; 74:127-131. 
41. Koya-Miyata S, Arai N, Mizote A, Taniguchi Y, Ushio S, Iwaki K, et al. Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biol Pharm Bull 2009; 32:2022–2028. 
42. Rimbach G, Fischer A, Schloesser A, Jerz G, Ikuta N, Ishida Y, et al. Anti-inflammatory properties of Brazilian green propolis encapsulated in a γ-cyclodextrin complex in mice fed a western-type diet. Int J Mol Sci 2017; 18:1140-1153. 
43. Shin SH, Seo SG, Min S, Yang H, Lee E, Son JE, et al. Caffeic acid phenethyl ester, a major component of propolis, suppresses high fat diet-induced obesity through inhibiting adipogenesis at the mitotic clonal expansion stage. J Agric Food Chem 2014; 62:4306-4312. 
44. Nishikawa S, Aoyama H, Kamiya M, Higuchi J, Kato A, Soga M, et al. Artepillin C, a typical brazilian propolis-derived component, induces brown-like adipocyte formation in C3H10T1/2 cells, primary inguinal white adipose tissue-derived adipocytes, and mice. PLoS One 2016; 11:e0162512-e0162523. 
45. Pai SA, Martis EA, Munshi RP, Gursahani MS, Mestry SN, Juvekar AR. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. J Tradit Complement Med 2020; 10:577-585. 
46. Cho Y, Gutierrez L, Bordonaro M, Russo D, Anzelmi F, Hooven JT, et al. Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice. Cancer Med 2016; 5:2448–2458. 
47. Uddin S, Brooks PR, and Tran TD. Chemical Characterization, α -Glucosidase, α -Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods 2022; 11:1964-1981. 
48. Iio A, Ohguchi K, Inoue H, Maruyama H, Araki Y, Nozawa Y, et al. Ethanolic extracts of Brazilian red propolis promote adipocyte differentiation through PPARγ activation. Phytomedicine 2010; 17:974–979. 
49. Vanella L, Tibullo D, Godos J, Pluchinotta FR, Di Giacomo C, Sorrenti V, et al. Caffeic acid phenethyl ester regulates PPAR’s levels in stem cells-derived adipocytes. PPAR Res 2016; 2016:7359521-7359533. 
50. Gönüllülerde S, Propolisinin A, Direnci Hİ, Thanoon IA, Alfahad M, Abed MN. Effects of bee propolis on FBG , HbA1c, and insuline rsistance in healthy volunteers. 2021; 18:405-409. 
51. Ozdemir B, Gulhan MF, Sahna E, Selamoglu Z. The investigation of anti-oxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-L-arginine methyl ester. Clin Exp Hypertens 2021; 43:69-76. 
52. Ekhteiari Salmas R, Durdagi S, Gulhan MF, Duruyurek M, Abdullah HI, Selamoglu Z. The effects of pollen, propolis, and caffeic acid phenethyl ester on tyrosine hydroxylase activity and total RNA levels in hypertensive rats caused by nitric oxide synthase inhibition: experimental, docking and molecular dynamic studies. J Biomol Struct Dyn 2018; 36:609-620. 
53. Maruyama H, Sumitou Y, Sakamoto T, Araki Y, Hara H. Antihypertensive effects of flavonoids isolated from Brazilian green propolis in spontaneously hypertensive rats. Biol Pharm Bull 2009; 32:1244-1250. 
54. Selamoglu Talas Z. Propolis reduces oxidative stress in l-NAME-induced hypertension rats. Cell Biochem Funct 2014; 32:150–154. 
55. Salmas RE, Gulhan MF, Durdagi S, Sahna E, Abdullah HI, Selamoglu Z. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem Funct 2017; 35:304–314. 
56. Veerappan R, Senthilkumar R. Chrysin enhances anti-oxidants and oxidative stress in L-NAME-induced hypertensive rats. Int J Nutr Pharmacol Neurol Dis 2015; 5:20–27. 
57. Talas ZS, Ozdemir I, Ciftci O, Cakir O, Gulhan MF, Pasaoglu OM. Role of propolis on biochemical parameters in kidney and heart tissues against l-NAME induced oxidative injury in rats. Clin Exp Hypertens 2014; 36:492–496. 
58. Gulhan MF. Therapeutic potentials of propolis and pollen on biochemical changes in reproductive function of L-NAME induced hypertensive male rats. Clin Exp Hypertens 2019; 41:292–298. 
59. Mulyati AH, Sulaeman A, Marliyati SA, Rafi M, Fikri AM. Preclinical trial of propolis extract in prevention of high salt diet-induced hypertension. Pharmacogn J 2021; 13:89-96. 
60. Mujica V, Orrego R, Pérez J, Romero P, Ovalle P, Zúñiga-Hernández J, et al. The Role of propolis in oxidative stress and lipid metabolism: A randomized controlled trial. Evid based Complement Altern Med 2017; 2017:4272940-4272950. 
61. Syamil M, Suib M, Adnan W, Omar W, Omar EA. Ethanolic extract of propolis from the Malaysian stingless bee Geniotrigona thoracica inhibits formation of THP-1 derived macrophage foam cells. J Apic Res 2021; 60:478-490. 
62. Yu Y, Si Y, Song G, Luo T, Wang J, Qin S. Ethanolic extract of propolis promotes reverse cholesterol transport and the expression of ATP-binding cassette transporter A1 and G1 in mice. Lipids 2011; 46:805–811. 
63. Beltrame J, Freitas S, Pacheco A, Rudnicki M, Aparecida L, Augusto F, et al. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis. J Nutr Biochem 2012; 23:557–566. 
64. Nader MA, El-agamy DS, Suddek GM. Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits. Arch Pharm Res 2010; 33:637-643. 
65. Fang Y, Sang H, Yuan N, Sun H, Yao S, Wang J, et al. Ethanolic extract of propolis inhibits atherosclerosis in ApoE-knockout mice. Lipids Health Dis 2013; 12:123-128. 
66. Cuevas A, Saavedra N, Cavalcante MF, Salazar LA, Abdalla DSP. Identification of microRNAs involved in the modulation of pro-angiogenic factors in atherosclerosis by a polyphenol-rich extract from propolis. Arch Biochem Biophys 2014; 557:28-35. 
67. Xuan H, Li Z, Wang J, Wang K, Fu C, Yuan J, et al. Propolis reduces phosphatidylcholine-specific phospholipase C activity and increases annexin a7 level in oxidized-LDL-stimulated human umbilical vein endothelial cells. Evid based Complement Altern Med 2014; 2014:465383-465391. 
68. Musunuru K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids 2010; 45:907-914. 
69. Mohd Rosmi NSA, Shafie NH, Azlan A, Abdullah MA. Functional food mixtures: Inhibition of lipid peroxidation, HMGCoA reductase, and ACAT2 in hypercholesterolemia-induced rats. Food Sci Nutr 2021; 9:875-887. 
70. Dehghani S, Mehri S, and Hosseinzadeh H. The effects of crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci 2019; 22:460-468. 
71. Albokhadaim I. Influence of dietary supplementation of propolis on hematology, biochemistry and lipid profile of rats fed high cholesterol diet. J Adv Vet Anim Res 2015; 2:56–63. 
72. Kolankaya D, Selmanoǧlu G, Sorkun K, Salih B. Protective effects of Turkish propolis on alcohol-induced serum lipid changes and liver injury in male rats. Food Chem 2002; 78:213-217. 
73. Farkhondeh T, Abedi F, Samarghandian S. Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed Pharmacother 2019; 109:1120-1125. 
74. Abdulsallam A, Thanoon IA, Dawood RS, Abduljabbar AI. Propolis mitigates rifampicin/isoniazid-induced lipid-redox and metabolic profile in an experimental animal model of oxidative stress. Open Access Maced J Med Sci 2022; 10:965-970. 
75. Nie J, Chang Y, Li Y, Zhou Y, Qin J, Sun Z, et al. Caffeic acid phenethyl ester (propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 cell models. J Agric Food Chem 2017; 65:9041-9053. 
76. Samadi N, Mozaffari-Khosravi H, Rahmanian M, Askarishahi M. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: a randomized, double-blind clinical trial. J Integr Med 2017; 15:124–134. 
77. Mariee AD, Abd-Allah GM, El-Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.). Biotechnol Appl Biochem 2009; 52:227-232. 
78. Qidwai W, Ashfaq T. Effect of dietary supplementation of black seed (N. Sativa L.) on lipid profile of patients suffering from diabetes. Antiinflamm Antiallergy Agents Med Chem 2014; 13:3–8. 
79. Cai W, Xu J, Li G, Liu T, Guo X, Wang H, et al. Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Res Int 2020; 130:108939. 
80. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 2012; 35:2402–2411. 
81. Mariee AD, Abd-Allah GM, and El-Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin-induced  diabetic nephropathy in rats: The possible modulatory effects of garlic (Allium sativum L.). Biotechnol Appl Biochem 2009; 52:227-232. 
82. Taher M, Tg Zakaria TMFS, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complement Altern Med 2016; 16:135-146. 
83. Nna VU, Bakar ABA, Mohamed M. Malaysian propolis, metformin and their combination, exert hepatoprotective effect in streptozotocin-induced diabetic rats. Life Sci 2018; 211:40-50. 
84. Ahad A, Ganai AA, Mujeeb M, and Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 2014; 279:1-7. 
85. Usman UZ, Bakar ABA, and Mohamed M. Propolis improves pregnancy outcomes and placental oxidative stress status in streptozotocin-induced diabetic rats. BMC Complement Altern Med 2018; 18:2–7. 
86. Sameni HR, Ramhormozi P, Bandegi AR, Taherian AA, Mirmohammadkhani M, Safari M. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J Diabetes Investig 2016; 7:506-513. 
87. Usman UZ, Bakar ABA, Mohamed M. Phytochemical composition and activity against hyperglycaemia of Malaysian propolis in diabetic rats. Biomed Res 2016; 27:46-51. 
88. Gao W, Pu L, Wei J, Yao Z, Wang Y, Shi T, et al. Serum anti-oxidant parameters are significantly increased in patients with type 2 diabetes mellitus after consumption of chinese propolis: A randomized controlled trial based on fasting serum glucose level. Diabetes Ther 2018; 9:101–111. 
89. Afsharpour F, Javadi M, Hashemipour S, Koushan Y, haghighian HK. Propolis supplementation improves glycemic and anti-oxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complement Ther Med 2019; 43:283–288. 
90. Zakerkish M, Jenabi M, Zaeemzadeh N, Hemmati AA, Neisi N. The effect of iranian propolis on glucose metabolism, lipid profile, insulin resistance, renal function and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Sci Rep 2019; 9:7289-7299. 
91. Seven İ, Baykalir BG, Seven PT, Dağoğlu G. The ameliorative effects of propolis against cyclosporine A induced hepatotoxicity and nephrotoxicity in rats. Kafkas Univ Vet Fak Derg 2014; 20:641–648. 
92. Washio K, Shimamoto Y, Kitamura H. Brazilian propolis extract increases leptin expression in mouse adipocytes. Biomed Res 2015; 36:343–346. 
93. Zheng Y, Wu Y, Tao L, Chen X, Jones TJ, Wang K, et al. Chinese propolis prevents obesity and metabolism syndromes induced by a high fat diet and accompanied by an altered gut microbiota structure in mice. Nutrients 2020; 12:959-981. 
94. Sakai T, Ohhata M, Fujii M, Oda S, Kusaka Y, Matsumoto M, et al. Brazilian green propolis promotes weight loss and reduces fat accumulation in C57BL/6 mice fed a high-fat diet. Biol Pharm Bull 2017; 40:391-395. 
95. Cardinault N, Tourniaire F, Astier J, Couturier C, Bonnet L, Seipelt E, et al. Botanic origin of propolis extract powder drives contrasted impact on diabesity in high-fat-fed mice. Antioxidants 2021; 10:411-425. 
96. Touzani S, Al-Waili N, Imtara H, Aboulghazi A, Hammas N, Falcao S, et al. Arbutus unedo honey and propolis ameliorate acute kidney injury, acute liver injury, and proteinuria via hypoglycemic and anti-oxidant activity in streptozotocin-treated rats. Cell Physiol Biochem 2022; 56:66-81. 
97. Teles F, Da Silva TM, Da Cruz FP, Honorato VH, De Oliveira Costa H, Barbosa APF, et al. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS One 2015; 10:e0116535-e0116549.
98. Chen Y, Wang J, Wang Y, Wang P, Zhou Z, Wu R, et al. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun 2022; 13:246-265. 
99. Nishikawa S, Kamiya M, Aoyama H, Yoshimura K, Miyata R, Kumazawa S, et al. Co-administration of curcumin and artepillin c induces development of brown-like adipocytes in association with local norepinephrine production by alternatively activated macrophages in mice. J Nutr Sci Vitaminol 2019; 65:328-334. 
100. Gogebakan A, Talas ZS, Ozdemir I, Sahna E. Role of propolis on tyrosine hydroxylase activity and blood pressure in nitric oxide synthase-inhibited hypertensive rats. Clin Exp Hypertens 2012; 34:424-428. 
101. Mishima S, Yoshida C, Akino S, Sakamoto T. Antihypertensive effects of Brazilian propolis: Identification of caffeoylquinic acids as constituents involved in the hypotension in spontaneously hypertensive rats. Biol Pharm Bull 2005; 28:1909-1914. 
102. Kubota Y, Umegaki K, Kobayashi K, Tanaka N, Kagota S, Nakamura K, et al. Anti-hypertensive effects of brazilian propolis in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2004; 31:29-30. 
103. Mollaoglu H, Gokcimen A, Ozguner F, Oktem F, Koyu A, Kocak A, et al. Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat. Toxicology 2006; 227:15-20. 
104. Selamoglu ZS, Ozdemir I, Ciftci O, Gulhan MF, Savci A. Anti-oxidant effect of ethanolic extract of propolis in liver of L-NAME treated rats. Adv Clin Exp Med 2015; 24:227-232. 
105. Chaihongsa N, Maneesai P, Sangartit W, Potue P, Bunbupha S, Pakdeechote P. Galangin alleviates vascular dysfunction and remodelling through modulation of  the TNF-R1, p-NF-κB and VCAM-1 pathways in hypertensive rats. Life Sci 2021; 285:119965. 
106. Gargouri W, Osés SM, Fernández-Muiño MA, Sancho MT, Kechaou N. Evaluation of bioactive compounds and biological activities of Tunisian propolis. Lwt 2019; 111:328-336. 
107. Osés SM, Marcos P, Azofra P, de Pabl A, Fernández-Muíño MÁ, Sancho MT. Phenolic profile, anti-oxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants 2020; 9:20–35. 
108. Yang N, Qin S, Wang M. Pinocembrin , a major flavonoid in propolis , improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 2013; 65:541-551. 
109. Ji C, Pan Y, Xu S, Yu C, Ji J, Chen M, et al. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-κB pathway. J Food Biochem 2021; 45:e13577. 
110. Ohkura N, Oishi K, Kihara-Negishi F, Atsumi GI, Tatefuji T. Effects of a diet containing Brazilian propolis on lipopolysaccharideinduced increases in plasma plasminogen activator inhibitor-1 levels in mice. J Intercult Ethnopharmacol 2016; 5:439-443. 
111. Claus R, Kinscherf R, Gehrke C, Bonaterra G, Basnet P, Metz J, et al. Antiapoptotic effects of propolis extract and propol on human macrophages exposed to minimally modified low density lipoprotein. Arzneimittelforschung 2000; 50:373-379. 
112. Ohkura N, Takata Y, Ando K, Kanai S, Watanabe E, Nohira T, et al. Propolis and its constituent chrysin inhibit plasminogen activator inhibitor 1 production induced by tumour necrosis factor-α and lipopolysaccharide. J Apic Res 2012; 51:179-184. 
113. Zhou K, Li X, Du Q, Li D, Hu M, Yang X, et al. A CAPE analogue as novel antiplatelet agent efficiently inhibits collagen-induced platelet aggregation. Pharmazie 2014; 69:615-620. 
114. Watanabe A, de Almeida MO, Deguchi Y, Kozuka R, Arruda C, Berretta AA, et al. Effects of baccharin isolated from brazilian green propolis on adipocyte differentiation and hyperglycemia in ob/ob diabetic mice. Int J Mol Sci 2021; 22:6954-6964. 
115. Hashem NM, El-Hady AA, Hassan O. Effect of vitamin E or propolis supplementation on semen quality, oxidative status and hemato-biochemical changes of rabbit bucks during hot season. Livest Sci 2013; 157:520–526. 
116. Laaroussi H, Bakour M, Ousaaid D, Aboulghazi A, Ferreira-Santos P, Genisheva Z, et al. Effect of anti-oxidant-rich propolis and bee pollen extracts against D-glucose induced type 2 diabetes in rats. Int Food Res J 2020; 138:109802. 
117. Hu F, Zhu W, Chen M, Shou Q, Li Y. Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evid based Complement Altern Med 2011; 2011:468529-468536. 
118. Sajjad S, Malik H, Saeed L, Hashim I, Farooq U, Manzoor F. Synergistic potential of propolis and vitamin E against sub-acute toxicity of AlCl 3 in albino mice: In vivo study. Physiol Res 2019; 68:67-74. 
119. Batista LLV, Campesatto EA, De Assis MLB, Barbosa APF, Grillo LAM, Dornelas CB. Comparative study of topical green and red propolis in the repair of wounds induced in rats. Rev Col Bras Cir 2012; 39:515–520. 
120. Mani F, Damasceno HCR, Novelli ELB, Martins EAM, Sforcin JM. Propolis: Effect of different concentrations, extracts and intake period on seric biochemical variables. J Ethnopharmacol 2006; 105:95–98. 
121. Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Reports 2014; 1:200–208. 
122. Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res 2005; 51:147–152. 
123. Sorrenti V, Raffaele M, Vanella L, Acquaviva R, Salerno L, Pittalà V, et al. Protective effects of caffeic acid phenethyl ester (Cape) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats. Int J Mol Sci 2019; 20:2441-2453. 
124. Zhu W, Li YH, Chen ML, Hu FL. Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. Hum Exp Toxicol 2011; 30:1246–1255. 
125. Okutan H, Ozcelik N, Ramazan Yilmaz H, Uz E. Effects of caffeic acid phenethyl ester on lipid peroxidation and anti-oxidant enzymes in diabetic rat heart. Clin Biochem 2005; 38:191–196. 
126. Al Ghamdi AA, Badr G, Hozzein WN, Allam A, Al-Waili NS, Al-Wadaan MA, et al. Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress. BMC Immunol 2015; 16:54-77. 
127. Nna VU, Bakar ABA, Ahmad A, Eleazu CO, Mohamed M. Oxidative stress, NF-κB-mediated inflammation and apoptosis in the testes of streptozotocin-induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants 2019; 8:465-487. 
128. Sartori DRS, Kawakami CL, Orsatti CL, Sforcin JM. Propolis effect on streptozotocin-induced diabetic rats. J Venom Anim Toxins Incl Trop Dis 2009; 15:93–102. 
129. Shi Y zhen, Liu Y chen, Zheng Y fei, Chen Y fan, Si J juan, Chen M li, et al. Ethanol extract of Chinese propolis attenuates early diabetic retinopathy by protecting the Bbood–retinal barrier in streptozotocin-induced diabetic rats. J Food Sci 2019; 84:358-369. 
130. Chen LH, Chien YW, Chang ML, Hou CC, Chan CH, Tang HW, et al. Taiwanese green propolis ethanol extract delays the progression of type 2 diabetes mellitus in rats treated with streptozotocin/high-fat diet. Nutrients 2018; 10:503-517. 
131. Zhao L, Pu L, Wei J, Li J, Wu J, Xin Z, et al. Brazilian green propolis improves anti-oxidant function in patients with type 2 diabetes mellitus. Int J Environ Res Public Health 2016; 13:498-506. 
132. Hesami S, Hashemipour S, Shiri-Shahsavar MR, Koushan Y, Khadem Haghighian H. Administration of Iranian propolis attenuates oxidative stress and blood glucose in type II diabetic patients: A randomized, double-blind, placebo-controlled, clinical trial. Casp J Intern Med 2019; 10:48-54.