1. Khan G, Hashim MJ. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990-2010. Infect Agent Cancer 2014; 9:1-11.
2. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004; 4:757-768.
3. Hernández Durán A, Grünewald K, Topf M. Conserved Central Intraviral Protein Interactome of the Herpesviridae Family. Msystems 2019; 4:e00295-00219.
4. Dunmire SK, Verghese PS, Balfour Jr HH. Primary epstein-barr virus infection. J Clin Virol 2018; 102:84-92.
5. Houldcroft CJ, Kellam P. Host genetics of Epstein–Barr virus infection, latency and disease. Rev Med Virol 2015; 25:71-84.
6. Kang M-S, Kieff E. Epstein–Barr virus latent genes. Exp Mol Med 2015; 47:e131-e131.
7. Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse H-J, et al. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol 2005; 79:13984-13992.
8. Hui-Yuen J, McAllister S, Koganti S, Hill E, Bhaduri-McIntosh S. Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. J Vis Exp 2011:e3321.
9. Amoli M, Carthy D, Platt H, Ollier W. EBV Immortalization of human B lymphocytes separated from small volumes of cryo-preserved whole blood. Int J Epidemiol 2008; 37:i41-i45.
10. Li H, Liu S, Hu J, Luo X, Li N, Bode AM, et al. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309.
11. Tsai S-C, Lin S-J, Chen P-W, Luo W-Y, Yeh T-H, Wang H-W, et al. EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 2009; 114:109-118.
12. Morrison TE, Mauser A, Klingelhutz A, Kenney SC. Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J Virol 2004; 78:544-549.
13. Milián E, Prats E, Cairó JJ, Gòdia F, Vives J. BHRF1 exerts an antiapoptotic effect and cell cycle arrest via Bcl-2 in murine hybridomas. J Biotechnol 2015; 209:58-67.
14. Xu F-H, Xiong D, Xu Y-F, Cao S-M, Xue W-Q, Qin H-D, et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein–Barr virus activation. J Natl Cancer Inst 2012; 104:1396-1410.
15. Gargouri B, Nasr R, Mseddi M, Benmansour R, Lassoued s. Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines. Lipids Health Dis 2011; 10:1-8.
16. Frisan T, Levitsky V, Masucci M. Generation of lymphoblastoid cell lines (LCLs). Epstein-Barr Virus Protocols Methods Mol Biol 2001:125-127.
17. Darlington GJ. Epstein-Barr virus transformation of lymphoblasts. CSH Protoc 2006; 2006:pdb. prot4481.
18. Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol 2007; 27:19-35.
19. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10:1-19.
20. Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res 2016; 23:29.
21. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci 2006; 78:2081-2087.
22. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009; 30:85-94.
23. Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T. Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol 2000; 75:919-922.
24. Tahmasebi BM, Erfani MV, Babaei E, Najafi F, Zamani M, Shariati M, et al. Dendrosomal Nano-Curcumin, the Novel Formulation to Improve the Anticancer Properties of Curcumin. progress s in biological sciences 2015;5: 143-158.
25. Mirgani MT, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, et al. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 2014; 9:403.
26. Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 2012; 12:226-234.
27. Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, et al. Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 2015; 758:188-196.
28. Ranji N, Sadeghizadeh M. Investigation of free and dendrosomal curcumin effects on apoptosis induction in stem cells and cancer cell lines. Pathobiology Research 2011; 14:37-49.
29. Sadeghizadeh M, Ranjbar B, Damaghi M, Khaki L, Sarbolouki MN, Najafi F, et al. Dendrosomes as novel gene porters‐III. J Chem Technol Biotechnol: International Research in Process, Environmental & Clean Technology 2008; 83:912-920.
30. Ghahari SMM, Ajami A, Sadeghizadeh M, Rastaghi ARE, Mahdavi M. Nanocurcumin as an adjuvant in killed Toxoplasma gondii vaccine formulation: An experience in BALB/c mice. Exp Parasitol 2022; 243:108404.
31. Farsani SSM, Sadeghizadeh M, Gholampour MA, Safari Z, Najafi F. Nanocurcumin as a novel stimulator of megakaryopoiesis that ameliorates chemotherapy-induced thrombocytopenia in mice. Life Sci 2020; 256:117840.
32. Esmatabadi MJD, Farhangi B, Montazeri M, Monfared H, Sistani RN, Sadeghizadeh M. Up-regulation of miR-21 decreases chemotherapeutic effect of dendrosomal curcumin in breast cancer cells. Iran J Basic Med Sci 2017; 20:350.
33. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 2011; 3:1558-1567.
34. Baghi N, Bakhshinejad B, Keshavarz R, Babashah S, Sadeghizadeh M. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene 2018; 670:55-62.
35. Esmatabadi MJD, Farhangi B, Safari Z, Kazerooni H, Shirzad H, Zolghadr F, et al. Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 gene expression. Asian Pac J Cancer Prev 2015; 16:2473-2481.
36. Chaiwongkot A, Kitkumthorn N, Srisuttee R, Buranapraditkun S. Cellular expression profiles of Epstein-Barr virus-transformed B-lymphoblastoid cell lines Corrigendum in/10.3892/br. 2020.1379. Biomed Rep 2020; 13:1-1.
37. Londin ER, Keller MA, D’Andrea MR, Delgrosso K, Ertel A, Surrey S, et al. Whole-exome sequencing of DNA from peripheral blood mononuclear cells (PBMC) and EBV-transformed lymphocytes from the same donor. BMC genomics 2011; 12:1-9.
38. Frisan T, Levitsky V, Masucci M. Generation of lymphoblastoid cell lines (LCLs). Epstein-Barr Virus Protocols: Springer; Methods Mol Biol 2001. p. 125-127.
39. Ruitenberg JJ, Mulder CB, Maino VC, Landay AL, Ghanekar SA. VACUTAINER® CPT™ and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol 2006; 7:1-8.
40. Thorley-Lawson DA, Gross A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 2004; 350:1328-1337.
41. Meerloo JV, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: Springer 2011. p. 237-245.
42. Tolosa L, Donato MT, Gómez-Lechón MJ. General cytotoxicity assessment by means of the MTT assay. Protocols in in vitro hepatocyte research: Springer 2015. p. 333-348.
43. Amon W, Binné UK, Bryant H, Jenkins PJ, Karstegl CE, Farrell PJ. Lytic cycle gene regulation of Epstein-Barr virus. J Virol 2004; 78:13460-13469.
44. Bhende PM, Seaman WT, Delecluse H-J, Kenney SC. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol 2005; 79:7338-7348.
45. Bhende PM, Dickerson SJ, Sun X, Feng W-H, Kenney SC. X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J Virol 2007; 81:7363-7370.
46. Chang Y, Lee H-H, Chen Y-T, Lu J, Wu S-Y, Chen C-W, et al. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 2006; 80:7748-7755.
47. Bristol JA, Djavadian R, Albright ER, Coleman CB, Ohashi M, Hayes M, et al. A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog 2018; 14:e1007179.
48. Lee C-H, Yeh T-H, Lai H-C, Wu S-Y, Su I-J, Takada K, et al. Epstein-Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells upregulate interleukin-10 production from monocytes. J Virol 2011; 85:7333-7342.
49. Guenther JF, Cameron JE, Nguyen HT, Wang Y, Sullivan DE, Shan B, et al. Modulation of lung inflammation by the Epstein-Barr virus protein Zta. Am J Physiol Lung Cell Mol Physiol 2010; 299:L771-L784.
50. Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein–Barr virus. Rev Med Virol 2014; 24:242-253.
51. Stanfield BA, Luftig MA. Recent advances in understanding Epstein-Barr virus. F1000Res 2017; 6:386.
52. Morrison TE, Kenney SC. BZLF1, an Epstein–Barr virus immediate–early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function. J Virol 2004; 328:219-232.
53. Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LC, Suraweera CD, et al. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568.
54. Li H, Hu J, Luo X, Bode AM, Dong Z, Cao Y. Therapies based on targeting Epstein‐Barr virus lytic replication for EBV‐associated malignancies. Cancer Sci 2018; 109:2101-2108.
55. Yap H-Y, Siow T-S, Chow S-K, Teow S-Y. Epstein-Barr Virus-(EBV-) immortalized lymphoblastoid cell lines (LCLs) express high level of CD23 but low CD27 to support their growth. Adv Virol 2019; 2019:6464521.
56. Hur D, Lee M, Kim J, Kim JH, Shin Y, Rho J, et al. CD19 signalling improves the Epstein–Barr virus‐induced immortalization of human B cell. Cell Prolif 2005; 38:35-45.
57. Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. BioFactors 2019; 45:304-317.
58. Šudomová M, Hassan ST. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms 2021; 9:292.
59. Liu L, Yang J, Ji W, Wang C. Curcumin inhibits proliferation of epstein–barr virus-associated human nasopharyngeal carcinoma cells by inhibiting EBV nuclear antigen 1 expression. Biomed Res Int 2019; 2019:8592921.