BAMLET (Bovine α-lactalbumin made lethal to tumor cells) inhibits autophagy flux and induces apoptosis via down-regulation of protein kinase CK1α and attenuation of the AKT/p-ß-catenin (S552) pathway in RAS-mutated human colorectal HCT 116 cells

Document Type : Original Article


1 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Behbahan Faculty of Medical Sciences, Behbahan, Iran

3 Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran


Objective(s): Oncogenic RAS mutations occur in nearly 50% of colorectal cancer cases and are usually dependent on the autophagy mechanism to maintain tumorigenesis. We have recently demonstrated that CK1α controls autophagy machinery possibly through the AKT/p-ß-catenin (S552) signaling in colorectal cancer cells harboring RAS mutation. It has been found that a lipid-protein complex comprising oleic acid binds to human α-lactalbumin, known as HAMLET (human α -lactalbumin made lethal to tumor cells), targets a broad range of kinases including CK1α. Therefore, this study was designed to investigate the effects of BAMLET (bovine α -lactalbumin made lethal to tumor cells, the bovine counterpart of HAMLET) on CK1α expression, AKT/Phospho-ß-catenin (S552) pathway, and autophagy flux in RAS-mutated human colorectal HCT 116 cells.
Materials and Methods: For this purpose, HCT116 cells were treated with BAMLET and casein kinase 1 inhibitor (D4476), and quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to measure the proteins and genes of the AKT/Phospho-ß-catenin (S552) pathway and autophagy. Apoptosis was measured by flow-cytometry. 
Results: We found that BAMLET significantly reduced cell viability and decreased the expression of CK1α. Additionally, BAMLET inhibited autophagy flux and enhanced the ability of CK1α inhibitor D4476 to impair autophagy flux, which was accompanied by an increase in the apoptosis percentage. We also observed that BAMLET empowered D4476 to down-regulate the AKT/Phospho-ß-catenin (S552) axis. 
Conclusion: BAMLET hampers autophagy flux and leads to apoptosis induction, possibly, by reducing the expression of CK1α and attenuation of the AKT/Phospho-ß-catenin (S552) axis.


Main Subjects

1. Recio-Boiles A, Waheed A, Cagir B. Cancer, colon. StatPearls [Internet] 2019.
2. Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18.
3. Midthun L, Shaheen S, Deisch J, Senthil M, Tsai J, Hsueh C-T. Concomitant KRAS and BRAF mutations in colorectal cancer. J Gastrointest Oncol 2019; 10:577-581.
4. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72:2457-2467.
5. Guo JY, Chen H-Y, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25:460-470.
6. Behrouj H, Mahmoudzadeh A, Ghavami S, Mokarram P. Autophagy flux correlates with upregulation of AKT-1 in RAS mutated colon cancer cells. Middle East J Cancer 2021; 12: 457-465.
7. Mizushima N. Autophagy: Process and function. Genes Dev 2007; 21:2861-2873.
8. Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi Y-H, et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 2011; 286:12924-12932.
9. Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011; 22:165-178.
10. Jung S, Jeong H, Yu SW. Autophagy as a decisive process for cell death. Exp Mol Med 2020; 52:921-930.
11. Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol 2018; 15:709-720.
12. Cheong JK, Zhang F, Chua PJ, Bay BH, Thorburn A, Virshup DM. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers. J Clin Invest 2015; 125:1401-1418.
13. Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675-689.
14. Manni S, Carrino M, Manzoni M, Gianesin K, Nunes SC, Costacurta M, et al. Inactivation of CK1α in multiple myeloma empowers drug cytotoxicity by affecting AKT and β-catenin survival signaling pathways. Oncotarget 2017; 8:14604-14619.
15. Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169:381-405.
16. Ormanns S, Neumann J, Horst D, Kirchner T, Jung A. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear β-catenin depend on active PI3K signaling. Oncotarget 2014; 5:2999-3011.
17. Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by β-catenin signaling. Cell Physiol Biochem 2015; 35:926-932.
18. Behrouj H, Seghatoleslam A, Mokarram P, Ghavami S. Effect of casein kinase 1α inhibition on autophagy flux and the AKT/phospho-β-catenin (S552) axis in HCT116, a RAS-mutated colorectal cancer cell line. Can J Physiol Pharmacol 2021; 99:1-10.
19. Ho J, Nadeem A, Rydström A, Puthia M, Svanborg C. Targeting of nucleotide-binding proteins by HAMLET-a conserved tumor cell death mechanism. Oncogene 2016; 35:897-907.
20. Hallgren O, Aits S, Brest P, Gustafsson L, Mossberg A-K, Wullt B, et al. Apoptosis and tumor cell death in response to HAMLET (human α-lactalbumin made lethal to tumor cells). Adv Exp Med Biol 2008;606:217-40.
21. Sinevici N, Harte N, O’Grady I, Xie Y, Min S, Mok KH, et al. The novel therapeutic potential of bovine α-lactalbumin made lethal to tumour cells (BALMET) and oleic acid in oral squamous cell carcinoma (OSCC). Eur J Cancer Prev 2021; 30:178-187.
22. Fischer W, Gustafsson L, Mossberg A-K, Gronli J, Mork S, Bjerkvig R, et al. Human α-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res 2004; 64:2105-2112.
23. Mossberg AK, Wullt B, Gustafsson L, Månsson W, Ljunggren E, Svanborg C. Bladder cancers respond to intravesical instillation of (HAMLET human α‐lactalbumin made lethal to tumor cells). Int  J Cancer 2007; 121:1352-1359.
24. Puthia M, Storm P, Nadeem A, Hsiung S, Svanborg C. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells). Gut 2014; 63:131-142.
25. Gustafsson L, Leijonhufvud I, Aronsson A, Mossberg A-K, Svanborg C. Treatment of skin papillomas with topical α-lactalbumin-oleic acid. N Engl J Med 2004; 350:2663-2672.
26. Kamijima T, Ohmura A, Sato T, Akimoto K, Itabashi M, Mizuguchi M, et al. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem Biophys Res Commun  2008; 376:211-214.
27. Ghavami S, Kerkhoff C, Los M, Hashemi M, Sorg C, Karami‐Tehrani F. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: The role of ROS and the effect of metal ions. J Leukoc Biol 2004; 76:169-175.
28. Alizadeh J, Glogowska A, Thliveris J, Kalantari F, Shojaei S, Hombach-Klonisch S, et al. Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim Biophys Acta Mol Cell Res 2018; 1865:749-768.
29. Nicoletti I, Migliorati G, Pagliacci M, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139:271-279.
30. Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, et al. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 2017; 8:3980-4000.
31. Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev 2011; 25:1999-2010.
32. Jin S, White E. Role of autophagy in cancer: Management of metabolic stress. Autophagy 2007; 3:28-31.
33. Roy S, Debnath J, editors. Autophagy and tumorigenesis. Seminars in immunopathology; 2010: Springer.
34. Liu EY, Ryan KM. Autophagy and cancer–issues we need to digest. J Cell Sci 2012; 125:2349-2358.
35. Alves S, Castro L, Fernandes MS, Francisco R, Castro P, Priault M, et al. Colorectal cancer-related mutant KRAS alleles function as positive regulators of autophagy. Oncotarget 2015; 6:30787-30802.
36. Fitzwalter BE, Towers CG, Sullivan KD, Andrysik Z, Hoh M, Ludwig M, et al. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell 2018; 44:555-565.
37. Guo JY, Teng X, Laddha SV, Ma S, Van Nostrand SC, Yang Y, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev 2016; 30:1704-1717.
38. Gonçalves PR, Rocha-Brito KJ, Fernandes MR, Abrantes JL, Durán N, Ferreira-Halder CV. Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumor Biol 2016; 37:14049-14058.
39. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes  Dev 2011; 25:717-729.
40. Eisenberg-Lerner A, Kimchi A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009; 14:376-391.
41. Ryter SW, Mizumura K, Choi AM. The impact of autophagy on cell death modalities. Int J Cell Biol 2014;2014:502676-502687.
42. Ueno T, Komatsu M. Monitoring autophagy flux and activity: Principles and applications. Bioessays 2020; 42:2000122-2000132.
43. Zhang Y, Gong J, Xing T, Zheng S, Ding W. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis 2013; 4:e550-e550.
44. Xu W, Huang Z, Gan Y, Chen R, Huang Y, Xue B, et al. Casein kinase 1α inhibits p53 downstream of MDM2‑mediated autophagy and apoptosis in acute myeloid leukemia. Oncol Rep 2020; 44:1895-1904.
45. Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, et al. CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat Cell Biol 2018; 20:465-478.
46. Hale CM, Cheng Q, Ortuno D, Huang M, Nojima D, Kassner PD, et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy 2016; 12:713-726.
47. Shang S, Hua F, Hu Z-W. The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget 2017; 8:33972-33989.
48. Choi S-W, Song J-K, Yim Y-S, Yun H-G, Chun K-H. Glucose deprivation triggers protein kinase C-dependent β-catenin proteasomal degradation. J Biol Chem 2015; 290:9863-9873.
49. Su N, Wang P, Li Y. Role of Wnt/β‑catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells. Oncol Lett 2016; 12:4623-4629.
50. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997; 275:1787-1790.
51. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology 2012; 142:219-232.
52. Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. ß-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget 2016; 7:49435-49449.
53. Amable G, Martínez-León E, Picco ME, Di Siervi N, Davio C, Rozengurt E, et al. Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/Akt pathway in colorectal cancer cells. Int J Biochem Cell Biol 2019; 112:88-94.
54. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122:3589-3594.
55. Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, et al. mTOR generates an auto-amplification loop by triggering the βTrCP-and CK1α-dependent degradation of DEPTOR. Mol Cell 2011; 44:317-324.