Irbesartan ameliorates inflammation via transendothelial leukocyte migration due to VCAM-1/NOX-1 signaling in cisplatin-induced cardiotoxicity

Document Type : Original Article

Authors

1 Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey

2 Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey

3 Department of Pharmaceutical Research and Development, Health Science Institute, Süleyman Demirel University, Isparta, Turkey

4 Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey

5 Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey

6 Department of Cardiology and Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey

Abstract

Objective(s): Cisplatin (CP) is frequently used in various types of cancers. The cardiotoxic effects of this agent limit its usage. Our study seeks to investigate the protective effects of Irbesartan (IRB) on CP-induced cardiotoxicity. 
Materials and Methods: The following four groups comprised thirty-two rats: control, CP, CP+IRB, and IRB. On the fourth day of the experiment, 5 mg/kg of CP was given to CP and CP+IRB groups intraperitoneally, and for seven days, water or IRB 50 mg/kg (orally) was administered. Vascular endothelial growth factor (VEGF), caspase-3 (Cas-3), vascular cell adhesion molecule-1 (VCAM-1), NADPH oxidase-1 (NOX-1), creatine kinase MB (CK-MB), and lactate dehydrogenase (LDH) were measured. 
Results: The levels of VCAM-1, NOX-1, VEGF, Cas-3, and LDH were increased in the CP group. The treatment with IRB decreased VCAM-1, NOX-1, VEGF, Cas-3, and LDH levels significantly  (P<0.05). Histopathological examination revealed normal heart architecture in Control and IRB groups. While marked hyperemia and myocardial cell degeneration were noticed in the CP group, significant amelioration was observed in the CP+IRB group. Aortas in the CP group showed endothelial damage and desquamation. IRB treatment markedly ameliorated histopathological findings in the CP+IRB group. Cardiac and aortic damage caused by CP was attenuated by IRB treatment owing to the anti-inflammatory and antiapoptotic effects of IRB.
Conclusion: IRB may help reduce the severity of CP-induced cardiac injury by limiting leukocyte migration and reducing inflammation and apoptosis.

Keywords

Main Subjects


1. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925.
2. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31:1869-1883.
3. Herrmann J. Cardiovascular toxicity with cisplatin in patients with testicular cancer: Looking for something heavier than heavy metal. JACC CardioOncol 2020;2:456-459.
4. Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 2015;309:H1453-1467.
5. Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors 2016;42:647-664.
6. Nuver J, Smit AJ, Wolffenbuttel BH, Sluiter WJ, Hoekstra HJ, Sleijfer DT, et al. The metabolic syndrome and disturbances in hormone levels in long-term survivors of disseminated testicular cancer. J Clin Oncol 2005;23:3718-3725.
7. Nuver J, Smit AJ, Sleijfer DT, van Gessel AI, van Roon AM, van der Meer J, et al. Microalbuminuria, decreased fibrinolysis, and inflammation as early signs of atherosclerosis in long-term survivors of disseminated testicular cancer. Eur J Cancer. 2004;40:701-706.
8. Sypniewska G. Pro-inflammatory and prothrombotic factors and metabolic syndrome. EJIFCC 2007;18:39-46.
9. Guerrero-Beltrán CE, Mukhopadhyay P, Horváth B, Rajesh M, Tapia E, García-Torres I, et al. Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. J Nutr Biochem 2012;23:494-500.
10. Kim H-J, Ravichandran K, Ozkok A, Wang Q, He Z, Jani A, et al. The water-soluble triptolide derivative PG490-88 protects against cisplatin-induced acute kidney injury. J Pharmacol Exp Ther 2014;349:518-525.
11. Kong D-H, Kim YK, Kim MR, Jang JH, Lee S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int J Mol Sci 2018;19:1057-1072.
12. Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF‐κB pathway and cell adhesion molecules during inflammation. FASEB J 2018;32:4070-4084.
13. Bayrak S, Aktaş S, Altun Z, Çakir Y, Tütüncü M, Kum Özşengezer S, et al. Anti-oxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity. J Int Med Res 2020;48:0300060520951393-0300060520951403.
14. Gunturk E, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy 2019;120:423-428.
15. Qian P, Yan LJ, Li YQ, Yang HT, Duan HY, Wu JT, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med 2018;15:1959-1965.
16. Gianni D, Nicolas N, Zhang H, Der Mardirossian C, Kister J, Martinez L, et al. Optimization and characterization of an inhibitor for NADPH oxidase 1 (NOX-1). Probe Reports from the NIH Molecular Libraries Program [Internet]. 2011.
17. Cano-Domínguez N, Bowman B, Peraza-Reyes L, Aguirre J. Neurospora crassa NADPH oxidase NOX-1 is localized in the vacuolar system and the plasma membrane. Front Microbiol 2019;10:1825-1838.
18. García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016;114:110-120.
19. Kim HJ, Lee JH, Kim SJ, Oh GS, Moon HD, Kwon KB, et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci 2010;30:3933-3946.
20. Darwish IA, Darwish HW, Bakheit AH, Al-Kahtani HM, Alanazi Z. Irbesartan (a comprehensive profile). Profiles Drug Subst Excip Relat Methodol 2020;46:185-272.
21. El-Said NT, Mohamed EA, Taha RA. Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways. Naunyn Schmiedeberg’s Arch Pharmacol 2019;392:647-658.
22. Fang LN, Zhong S, Huang LJ, Lu B, Shen LW, Tang FY, et al. Protective effect of irbesartan by inhibiting ANGPTL2 expression in diabetic kidney disease. Curr Med Sci 2020;40:1114-1120.
23. Alibakhshi T, Khodayar MJ, Khorsandi L, Rashno M, Zeidooni L. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomed  Pharmacother 2018;105:225-232.
24. Shahin NN, Abdelkader NF, Safar MM. A novel role of irbesartan in gastroprotection against indomethacin-induced gastric injury in rats: Targeting DDAH/ADMA and EGFR/ERK signaling. Sci Rep 2018;8:1-12.
25. Chen C, Liang Z, Chen Q, Li ZG. Irbesartan and emodin on myocardial remodeling in Goldblatt hypertensive rats. J Cardiovasc Pharmacol 2012;60:375-380.
26. van den Belt-Dusebout AW, Nuver J, de Wit R, Gietema JA, ten Bokkel Huinink WW, Rodrigus PT, et al. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 2006;24:467-475.
27. van den Belt-Dusebout AW, de Wit R, Gietema JA, Horenblas S, Louwman MW, Ribot JG, et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 2007;25:4370-4378.
28. El-Hawwary AA, Omar NM. The influence of ginger administration on cisplatin-induced cardiotoxicity in rat: Light and electron microscopic study. Acta histochemica 2019;121:553-562.
29. Zhao L, Xing C, Sun W, Hou G, Yang G, Yuan L. Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother Pharmacol 2018;82:999-1008.
30. Bosl GJ, Leitner S, Atlas S, Sealey J, Preibisz J, Scheiner E. Increased plasma renin and aldosterone in patients treated with cisplatin-based chemotherapy for metastatic germ-cell tumors. J Clin Oncol 1986;4:1684-1689.
31. Kranzhöfer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kübler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999;19:1623-1629.
32. Han Y, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-κB transcription factors. Circ Res 1999;84:695-703.
33. Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 2004;109:1536-1542.
34. Brandes RP, Schröder K. Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 2008;19:513-518.
35. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 2002;99:715-720.
36. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett 2006;580:497-504.
37. Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H. Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta 2008;1783:23-33.
38. Matsuno K, Iwata K, Matsumoto M, Katsuyama M, Cui W, Murata A, et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic Biol Med 2012;53:1718-1728.
39. El-Naga RN. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis. Toxicol Appl Pharmacol 2014;274:87-95.
40. Jung H-Y, Oh S-H, Ahn J-S, Oh E-J, Kim Y-J, Kim C-D, et al. NOX1 inhibition attenuates kidney ischemia-reperfusion injury via inhibition of ROS-mediated ERK signaling. Int J Mol Sci 2020;21:6911-6929.
41. Dikalova A, Clempus R, Lassègue B, Cheng G, McCoy J, Dikalov S, et al. Clinical Perspective. Circulation 2005;112:2668-2676.
42. Xu WT, Shen GN, Li TZ, Zhang Y, Zhang T, Xue H, et al. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROSregulated MAPK, STAT3 and NFκB signaling pathways. Int J Oncol 2020;57:550-561.
43. Khalilzadeh B, Shadjou N, Kanberoglu GS, Afsharan H, De La Guardia M, Charoudeh HN, et al. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: A review. Microchimica Acta 2018;185:1-19.
44. Shaik-Dasthagirisaheb Y, Varvara G, Murmura G, Saggini A, Potalivo G, Caraffa A, et al. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol 2013;26:327-335.
45. Al-Kuraishy HM, Al-Gareeb AI, Al-Naimi MS. Renoprotective effect of irbesartan in a rat model of gentamicin-induced nephrotoxicity: Role of oxidative stress. J Lab physicians 2019;11:200-205.
46. Mohamed EA, Ahmed HI, Zaky HS. Protective effect of irbesartan against doxorubicin-induced nephrotoxicity in rats: implication of AMPK, PI3K/Akt, and mTOR signaling pathways. Can J Physiol Pharmacol 2018;96:1209-1217.
47. Ma R, Zhao Y, Yu X, Li N, Wang Q, Liang W, et al. Protective effects of irbesartan and benazepril against vaginal vascular remodeling and fibrosis in female spontaneously hypertensive rats. J Int Med Res 2020;48:0300060520943453-0300060520943467.
48. Fang L-n, Zhong S, Huang L-j, Lu B, Shen L-w, Tang F-y, et al. Protective effect of irbesartan by inhibiting ANGPTL2 expression in diabetic kidney disease. Curr Med Sci 2020;40:1114-1120.
49. Zhang H, Tao M, Kang PF, Guo JL, Xuan L, Gao Q, et al. [Effects of irbesartan on Notch1 signaling pathway in diabetic rats with myocardial injury]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2018;34:427-431.
50. Villalba N, Baby S, Yuan SY. The endothelial glycocalyx as a double-edged sword in microvascular homeostasis and pathogenesis. Front Cell Dev Biol 2021;9:711003-11011.